

NES39

Enhancement Case (NES39)

TABLE OF CONTENTS

1. 2. 2.1.	INTRODUCTION NEED FOR ENHANCEMENT INVESTMENT ALIGNMENT WITH STATUTORY PLANNING FRAMEWORKS	6
2.2.	OUR PROGRESS UP TO 2025	7
2.3.	NEED FOR INVESTMENT IN AMP8	8
2.3.1	WINEP guidance and AMP8	8
2.3.2	Needs for investigations	9
2.3.3	Needs for chemicals load standstill – no deterioration	13
2.3.4	List of Sites WFD chemicals	13
2.3.5	Detailed list of needs chemicals	18
2.4.	NEED FOR ENHANCEMENT EXPENDITURE IN AMP8	21
2.4.1	Base vs enhancement expenditure	21
2.5.	ALIGNMENT TO THE LONG-TERM STRATEGY	22
2.6.	CUSTOMER SUPPORT FOR THE NEED	22
2.7.	FACTORS OUTSIDE MANAGEMENT CONTROL	23
3. 3.1.	BEST OPTION FOR CUSTOMERS PROCESS FOR IDENTIFYING THE BEST OPTION FOR CUSTOMERS	
3.1.1	WINEP options development principles	24
3.1.2	Hierarchy for identifying unconstrained options	25
3.2.	OPTIONS FOR CHEMICALS	27
0.0.4		
3.2.1	Broad range of unconstrained options – load standstill	27
3.2.1 3.2.2	Broad range of unconstrained options – load standstill	
		28
3.2.2	Transfers	28 28
3.2.2 3.2.3	Transfers Primary and secondary screening of options	28 28 28
3.2.2 3.2.3 (1)	Transfers Primary and secondary screening of options Results of primary screening	28 28 28 33
3.2.2 3.2.3 (1) (2)	Transfers Primary and secondary screening of options Results of primary screening Investigation and operational interventions	28 28 28 33 34
3.2.2 3.2.3 (1) (2) 3.2.4	Transfers Primary and secondary screening of options Results of primary screening Investigation and operational interventions Best value	28 28 33 34 34
3.2.2 3.2.3 (1) (2) 3.2.4 3.2.5	Transfers Primary and secondary screening of options Results of primary screening Investigation and operational interventions Best value Benefit scoring	28 28 33 34 34 36
3.2.2 3.2.3 (1) (2) 3.2.4 3.2.5 3.2.6	Transfers Primary and secondary screening of options Results of primary screening Investigation and operational interventions Best value Benefit scoring Investment appraisal	28 28 33 34 34 36 37

Enhancement Case (NES39)

6. 7.	APPENDIX A: WFD CHEMCIALS CURRENT PERFORMANCE APPENDIX B: NPV AND PREFERRED OPTIONS	
5.2.	PRICE CONTROL DELIVERABLES	50
5. 5.1.	CUSTOMER PROTECTION PERFORMANCE COMMITMENT	
4.2.4	Factors affecting cost allowances	49
4.2.3	Cost benchmarking	48
4.2.2	Options providing cost efficiencies	47
4.2.1	Cost methodology	47
4.2.	APPROACH TO COSTING	47
4. 4.1.	COST EFFICIENCY	
3.2.12	Customers views informing option selection	45
3.2.11	Direct procurement for customers	45
3.2.10	Third party funding	45

1. INTRODUCTION

Our long-term goals include "caring for the long term needs of our environment", and our ambition is to "restore and enhance our local and global environment"¹. Our plan shows how we meet Water Industry National Environment Programme (WINEP)² needs and is endorsed by the Environment Agency (EA).

We are committed to providing for our customers and the environment. To deliver on this commitment we have a statutory obligation through WINEP. We are confident that our current and future plans will enable us to maintain an exceptional level of performance and deliver wider economic and environmental benefits.

In previously funded plans we have invested in chemicals reduction and investigations into emerging contaminants in-line with the WINEP guidance, this has included a collaborative approach to maximise research and learning. This has helped us understand where we need to invest in our future plans, both to remove contaminants and to undergo further investigations.

We aim to meet and go beyond these obligations, putting the environmental outcomes at the heart of our environment programme. Through our approach to WINEP and our Drainage and Wastewater Management Plan (DWMP)³ we have looked at the environmental and customer needs, focusing on the best long-term options that meet statutory needs and best value outcomes for our customers.

Our plan is prioritised through our robust value framework, this way we have confidence we have chosen the best value options to meet our goals. Our WINEP investment is enabled by our base expenditure and the additional funding we recognise is needed to significantly improve our wastewater assets.

The chemicals we need to treat and remove through this enhancement expenditure have been evidenced through prior investigations. Our AMP8 investigations, research and findings allow us to understand where we need to invest in the future to ensure we are reducing our impact on the environment.

Our approach to our emerging contaminant expenditure is to maximise value through a collaborative approach. This means we're working together to build the programme and sharing research and trial outputs across the group of other water companies.

WATER living water

² WINEP, Environment Agency ³ Our DWMP

¹ Long-term strategy (NES_LTDS)

Enhancement Case (NES39)

This business case describes our proposed approach to meeting the statutory obligations as part of the WINEP. Guidance states⁴ that 'under the Water Framework Directive (WFD) chemicals and other substances with Environmental Quality Standards (EQSs) in surface waters may be described as Priority Hazardous Substances (PHS), Priority Substances (PS), Specific Pollutants (SP) or Other Pollutants (OP). PHS, PS, and OP are used to determine chemical status and SP are used in the determination of ecological status. There are also 'emerging chemicals' that do not have EQSs under these categories but may be of sufficient concern to warrant investigations to improve our understanding of the risk they may present, and to inform future interventions to protect the environment.

This business case details four areas of enhancement investment need as shown in Table 1.

TABLE 1: INVESTMENT NEEDS FOR CHEMICALS AND CONTAMINENT INVESTIGATIONS DURING AMP8

Investment need	WINEP drivers	Value (£)	
Statutory improvement actions resulting from previous chemical investigation programmes	WFD_NDLS_CHEM1	26.069m	
Statutory chemicals investigation programme (CIP4)	WFD_INV_CHEM_CIP4	1.761m	
Non-statutory investigations on nitrogen removal technologies and the technical achievable limit	WFD_INV_N-TAL	3.805m	
Non-statutory investigations on the impact of microplastics in sludge (industry trials)	WFD_INV_MP	0.520m	
Non-statutory bioresources investigations into nutrients & microplastics in sludge and biosolids outlets	WFD_INV	0.875m	
TOTAL		33.030m	

This business case will explain the need for this investment, our approach to developing our solutions and why we believe they demonstrate the best outcomes for our customers, society and the environment.

⁴ PR24 WINEP driver guidance – Chemicals version 0.3, Environment Agency, 2022

2. NEED FOR ENHANCEMENT INVESTMENT

2.1. ALIGNMENT WITH STATUTORY PLANNING FRAMEWORKS

Our plan to meet our long-term goals means aligning to all statutory planning frameworks. Our WINEP chemicals and emerging contaminants investment of **£33m** has been developed to meet the WINEP framework guidance on removal of chemicals from wastewater and investigations into emerging contaminants within wastewater.

Our investment is for activities which have not been funded in previous price reviews. We will build on the work funded and delivered in previous plans through the National Chemical Investigation Programmes (Phase 2 and 3).

Our plan for emerging contaminants enhancement investment is made up of five key areas: no deterioration of STW relating to chemical removal (£26.1m), chemicals investigations (£1.8m), nitrogen technically achievable limit (£3.8m), microplastics (£0.5m) and bioresources (£0.9m). The alignment of these needs to our regulatory requirements is detailed in Table 2. WINEP guidance stipulates that, 'investigations should be considered statutory unless they are in relation to emerging substances yet to be required by legislation. However, we strongly support all investigations into emerging substances to go ahead so that evidence is gathered to support the implications.'

TABLE 2: REQUIREMENTS FOR CHEMICALS AND EMERGING CONTAMINANTS DURING AMP8

Requirement	Legislation
The statutory requirement to ensure no deterioration of wastewater treatment and final effluent loads. In line with finding from previous chemical investigations programmes. (WFD_NDLS_CHEM1)	As defined by the Environment Agency (EA) through the WINEP guidance.
The statutory requirement to invest in and undertake trials as part of the water industry Chemicals Investigation Programme (CIP4). (WFD_INV_CHEM CIP4)	As defined by the Environment Agency (EA) through the WINEP guidance.
 Non-statutory requirement to investigate: The industry view of the impact of microplastics on sludge (WFD_INV_MP) Technology ability to achieve nitrogen technically achievable limit (WFD_INV_N-TAL) 	Future legislation is informed by investigations and trials to understand the occurrence of emerging contaminants in wastewater and current technology's ability to remove it. Investigations and trials have EA endorsement.
 Non-statutory requirement to investigate: Bioresources investigations: nutrients in sludge, biosolids outlets, microplastics in sludge (WFD_INV) 	Future legislation is likely for nutrients and microplastics. Biosolids outlets are limited due to legislative requirements. Other potential outlets need to be explored to mitigate this.

All these requirements contribute to the EA tier 1 outcome – water company contribution to achieve improvement objectives for water quality or prevent deterioration.

WATER living water WATER living water

2.2. OUR PROGRESS UP TO 2025

Through previous AMPs and in AMP7 we have been part of the CIP investigations and trials. These investigations and trials have informed the permit development for nutrients and chemicals in wastewater and the need to invest in removal of these as necessary.

During AMP7, our programme for phosphorus removal has been driven by outcome of the CIP2 trials. This programme was a collaborative approach to trialling alternative technologies for phosphorus removal to understand the lowest technical achievable limit (TAL). Understanding the costs required to meet TAL helps to inform permitting decisions to ensure the options are not cost prohibitive.

The CIP2 and CIP3 programme has investigated the presence and removal capability for a broader range of chemicals and metals. These programmes have informed our needs for investment in AMP8 to maintain a 'load standstill' for zinc and cypermethrin.

Our approach to meeting phosphorus reduction requirements in AMP7 has been through our WINEP programme. We have delivered a broad range of solutions including tighter treatment and catchment based solutions. We have an Environmental Performance Assessment (EPA) 3-star rating and are endorsed by the EA to use catchment based permitting approaches. This allows us to look at greener more sustainable options rather than hard engineered solutions.

We have reviewed our sites where it is more cost beneficial to transfer the wastewater rather than treat it to a higher standard. There are five sites where we have taken this approach in AMP7 and more options are covered in our AMP8 plan.

PR**24**

2.3. NEED FOR INVESTMENT IN AMP8

2.3.1 WINEP guidance and AMP8

The scale and timing of the activities in our plan are aligned to the WINEP statutory guidance and supported by the EA.

Our plan for improving our wastewater outputs in line with changes in chemical permit requirements and investigations into emerging contaminants has been developed as part of the WINEP framework. This work will meet the statutory requirements set out in the PR24 WINEP framework driver guidance which are shown in Table 3.

Driver Description Legal obligation Required by date WFD NDLS CHEM1 Statutory By 31 March Measures related to load standstill requirements for • requirement as 2030 chemicals Water company contribution to achieve defined by the EA • through WINEP improvement objectives for water quality or prevent framework deterioration WFD_INV_CHEM CIP4 Requested and By 31 March • Investigations into future emerging chemicals 2030 endorsed by EA Water company contribution to achieve improvement objectives for water quality or prevent deterioration WFD_INV_MP • Investigations into micro-plastics Requested and By 31 March endorsed by EA 2030 Water company contribution to develop and test • ways to remove micro-plastics from the environment WFD INV N-Tal • Investigations to assess treatment options for Requested and By 31 March endorsed by EA 2030 nitrogen Water companies action to develop and test • nitrogen treatment options. WFD INV By 31 March Bioresources investigations to assess the Agreed with EA • 2030 occurrence and impact of nutrients and microplastics on sludge Plus the availability of alternative biosolids outlets

TABLE 3: WINEP FRAMEWORK DRIVER GUIDANCE

Enhancement Case (NES39)

2.3.2 Needs for investigations

The investigation needs within this business case are summarised in Table 4 below.

TABLE 4: LIST OF NEEDS FOR INVESTIGATIONS

pations into the fate and transport of ent chemicals, pharmaceuticals and crobial resistance in the wastewater ent process and the water ment. gations into chemicals of emerging in to analyse and gather evidence to the impact on the environment of als that are not yet assessed through by requirements. gations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	Need to improve understanding of the fate and transport of chemicals in the environment to develop and inform future regulation. Need to improve understanding of the fate and transport of emerging chemicals in the environment to develop and inform future regulation. Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient concentrations spread to land, reducing the
crobial resistance in the wastewater ent process and the water ment. ations into chemicals of emerging in to analyse and gather evidence to the impact on the environment of als that are not yet assessed through by requirements. gations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	 environment to develop and inform future regulation. Need to improve understanding of the fate and transport of emerging chemicals in the environment to develop and inform future regulation. Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
ent process and the water ment. gations into chemicals of emerging in to analyse and gather evidence to the impact on the environment of als that are not yet assessed through by requirements. gations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and alation of micro-plastics in sludges ernative treatment technology trials.	regulation. Need to improve understanding of the fate and transport of emerging chemicals in the environment to develop and inform future regulation. Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
ment. gations into chemicals of emerging in to analyse and gather evidence to the impact on the environment of als that are not yet assessed through by requirements. gations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	Need to improve understanding of the fate and transport of emerging chemicals in the environment to develop and inform future regulation. Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
yations into chemicals of emerging in to analyse and gather evidence to the impact on the environment of als that are not yet assessed through by requirements. yations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	 and transport of emerging chemicals in the environment to develop and inform future regulation. Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
to analyse and gather evidence to the impact on the environment of als that are not yet assessed through y requirements. gations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	 and transport of emerging chemicals in the environment to develop and inform future regulation. Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
the impact on the environment of als that are not yet assessed through by requirements. gations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	 environment to develop and inform future regulation. Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
als that are not yet assessed through y requirements. gations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	regulation. Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
y requirements. gations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	Need to understand how low nitrogen levels can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
pations and trials to understand to nitrogen it is technically possible to dustry trials looking at fate and alation of micro-plastics in sludges ernative treatment technology trials.	can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
nitrogen it is technically possible to dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	can go to inform future regulation Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
dustry trials looking at fate and ulation of micro-plastics in sludges ernative treatment technology trials.	Need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
ulation of micro-plastics in sludges ernative treatment technology trials. The the concentration of key nutrients en, phosphorus) from the biosolids to	transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
ulation of micro-plastics in sludges ernative treatment technology trials. The the concentration of key nutrients en, phosphorus) from the biosolids to	transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
ernative treatment technology trials. e the concentration of key nutrients en, phosphorus) from the biosolids to	wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
e the concentration of key nutrients en, phosphorus) from the biosolids to	potential preventative interventions could be targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
en, phosphorus) from the biosolids to	targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
en, phosphorus) from the biosolids to	targeted at the most appropriate place. Regulation and legislation will potentially drive a reduction in allowed nutrient
en, phosphorus) from the biosolids to	drive a reduction in allowed nutrient
	concentrations spread to land reducing the
	sonooninations spread to idilu, reducing the
ilable landbank in future AMPS.	available land bank. If both N, P could be
ed management of struvite on Primary	managed / removed during / before the
Treatment Centres resulting in	advanced anaerobic process this would in
ed sludge processing resilience.	theory contribute to future mitigation from
	new legislation OR could allow greater
	quantities for biosolids to be spread to the
	same amount of hectarage - investigation of
	concept.
alternative end products other than	Diminishing landbank requires understandin
	of alternative treatment outlets.
-	
r, construction materials or biofuels	
	alternative end products other than ls to agriculture which allow its tion to an outlet, such as domestic r, construction materials or biofuels reducing the reliance of agriculture hk deployment.

PR**24**

Enhancement Case (NES39)

	Installation of end of process thermal	
	incineration plant to reduce volume biosolids	
	to land.	
Bioresources - Investigation	Understand in greater detail the impact of	Review of current knowledge of microplastics
of Microplastics in sludge	microplastics upon soils and crops to	throughout the STW process and then
	mitigate future legislation challenges and remain resilient to landbank deployment.	through the AAD process.

Chemicals Investigations Programme

Our planned investment of **£1.8m** in the industry collaborative investigation programme is made up of investigations into known chemicals and emerging chemicals. These are contaminants that are new or newly recognisable or measurable. The following CIP4 drivers are identified within the PR24 WINEP and will be addressed through the collaborative industry approach. These investigation needs are shared across the sector and hence the need for a collaborative approach.

- WFD_INV_Chem 4a
 - o Proposed permitting approach and investigations PFOS
 - o TraC waters
 - o Integrated Constructed Wetlands
 - o Groundwater and biosolids spreading
- WFD_INV_Chem 4b Sludge
- WFD_INV_Chem 4c Groundwater (Chemicals Monitoring)
- WFD_INV_Chem 4d AMR
- WFD_INV_Chem 4e
 - o Emerging Substances
 - Emerging Substances (PFAS)
 - Emerging Substances (CIP3 substances of concern)
 - Emerging Substances (Non-target screening)
 - Emerging Substances (Trend)
 - Emerging Substances (Endocrine Disruptors)
- WFD_INV_Chem 4f Innovative pathway control
- WFD_INV_Chem 4g Local investigations

The details of these drivers are within the UK Water Industry Research (UKWIR) CIP4 pre-scoping technical note⁵.

⁵ UKWIR CIP4 Pre-scoping technical note, SNC Lavalin

Nitrogen Technically Achievable Limit

N-TAL needs, as described in Table 4, are a Department of Environment, Food and Rural Affairs (Defra) approved nonstatutory requirement identified under the 1991 Urban Wastewater Treatment Directive (UWWTD) to consider more ambitious levels of nitrogen (N) reduction.

Many UK estuaries are affected by eutrophication, with several designated for their conservation interest. Recently effluent limits have been set mostly for phosphorus under WFD and Habitats Directive/sites of special scientific interest (SSSI) to achieve good ecological status. As the role of nitrogen in freshwater eutrophication, particularly lakes and reservoirs, has also become increasingly recognised, there is now a growing need to consider further nitrogen removal. In addition, Natural England is seeking more stringent levels of sewage treatment works (STW) nitrogen reduction to meet biodiversity targets.

WINEP framework driver guidance⁶ sets one non-statutory obligation for nitrogen technically achievable limit (N-TAL). The current N-TAL is 10mg/l, this was set in 1991 as part of the UWWTD. Defra and the EA have identified a need to review the N-TAL with a range of existing and emerging technologies.

Our investment of **£3.8m** is to ensure we can understand the levels of nitrogen we can get to with the available processes and technologies.

Microplastics

Microplastic prevalence within wastewater is an area still being research and investigated. Research⁷ shows that current processes at STWs remove a high proportion of microplastics. However, the fate within sludge treatment and subsequent applications of sludges to land is unknown.

As an industry we need to understand the input, fate and transport of micro-plastics through wastewater treatment processes so that any potential preventative interventions could be targeted at the most appropriate place. The need to investigate is shared across all wastewater and sewage companies in the UK. This joint need gives us the opportunity to have a collaborative approach to investing in investigations and trials as described in Table 4.

There is an industry steering group for microplastics, based on the findings of the CIP3. The steering group recorded that there is a need to go further than the initial investigations. All water and sewerage companies (WASCs) are involved in the joint investigations, establishing the need and agreeing the best options for meeting this need. We have agreed to host an investigation at one of our STW, it is yet to be confirmed which one. There will also be four joint field-application trials, hosted across the industry through AMP8.

⁶ PR24 WINEP driver guidance – Nitrogen Technically Achievable Limit version 0.3, Environment Agency, 2022

⁷ Removal of microplastics from wastewater: available techniques and way forward, Water Science & Technology (IWA Publishing), 2021

Our plan for micro-plastics enhanced investment of **£0.5m** is required to enable a collaborative approach to addressing this industry wide need and has been developed in accordance with the WINEP framework.

Bioresources

Bioresources investigations are non-statutory investigations, the sludge obligation has no investigation drivers hence the EA have agreed that we put forward this need under the WFD_INV driver.

All our liquid sludge is processed through either Bran Sands or Howdon advanced anaerobic digestion (AAD) plants. We are the only WASC that has 100% of their sludge processed through AAD. At present all our biosolids go to landbank. The availability of landbank areas is reducing and we understand the importance of investigating alternative options to ensure we have a continuous outlet for our biosolids to continue our sewage and sludge operations.

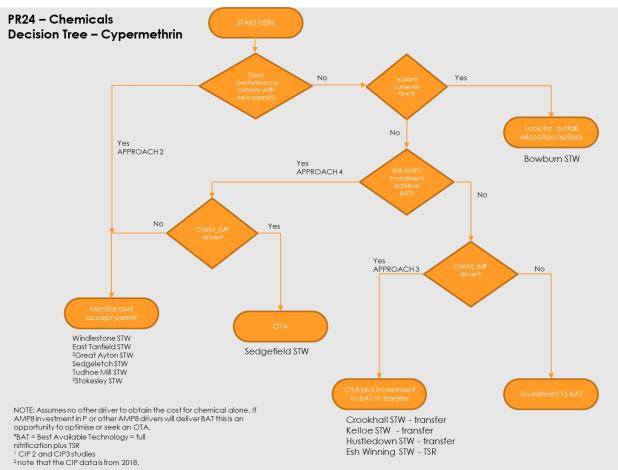
Our investigations need to cover three key areas:

- investigation of reducing or removal of biosolids nutrient content specifically nitrogen and phosphorus, to reduce risk of diffuse pollution, which will prevent deterioration of waterbodies and support the status of aquatic ecosystems and wildlife;
- investigation to review and identify alternative end of use pathways for biosolids other than deployment to agriculture land, to reduce risk of diffuse pollution, which will prevent deterioration of waterbodies and support the status of aquatic ecosystems and wildlife;
- investigation into microplastics within sludge to understand:
 - o behaviour when processed through AAD;
 - o dispersion / transformation upon being deployed onto agriculture land;
 - o potential of entering watercourses.

Success of these investigations will contribute to the reduction or removal of non-compliant agriculture practices and a clear direction can be established in terms of mitigation, contributing to potentially improving WFD status of applicable waterbodies.

Our investment of £0.9m covers investigations across the three areas described above.

2.3.3 Needs for chemicals load standstill – no deterioration


We have a statutory requirement to remove chemicals from our wastewater. New chemicals were assessed through previous CIP, this presents the need for us to meet a no deterioration level for these chemicals through our wastewater treatment processes. Our list of 15 sites for chemical investigation has been informed by the EA who provided a list of sites.

2.3.4 List of Sites WFD chemicals

Our list of sites has been informed by the outputs of the CIP2 and CIP3 programmes. The EA provided a list of sites and required chemical permits at each site. To justify investment there must be sufficient robust evidence that there is:

- a failure of a water quality objective (that is, related to EQS) with at least 75 % confidence.
- a clear link to water industry assets, and an obligation for water industry action.

The methodology used to identify the needs to comply with WFD improvement and no deterioration actions follows the PR24 WINEP driver guidance is illustrated in Figure 1. This is an example, showing the decision tree for cypermethrin, there is a similar decision tree for zinc.

FIGURE 1: METHODOLGOY FOR WFD_IMP_CHEM, WFD_ND_CHEM AND WFD_NDLS_CHEM

In section 2.3.5, Table 6 shows the list of sites and new permit levels which were provided by the EA on 29 September 2022, these are to be delivered within AMP8 by 2035.

A 95th percentile limit is the concentration of the substance that the discharge must be under at least 95% of the time. If a sample result is higher than its 95th percentile numeric limit, it is an individual look-up table (LUT) exceedance. When a LUT exceedance happens, the number of exceedances for that substance is compared with the number of samples taken in the 12-month period.

The LUT is required to review how many exceedances are allowed for the number of samples taken in the 12-month period. If the number of exceedances is greater than the maximum number allowed, then the site has a LUT failure.

As part of an Operating Techniques Agreement (OTA) a 99th percentile limit can be applied for. Changing the confidence statistic to the 99th percentile will take account of the uncertainty in the effectiveness and reliability of treatment technologies and allow more exceedances of the 95th percentile permit limit before a look up table failure is recorded. This approach will still control the distribution of effluent quality and require the operator to manage the treatment process to treat the

substance. The numbers of allowable exceedances under a 95th and 99th percentile confidence approach are set out in Table below.

TABLE 5: NUMBER OF SAMPLES ALLOWABLE EXCEEDANCES

NUMBER OF SAMPLES	NUMBER OF EXCEEDANCES ALLOWED UNDER A 95%ILE CONFIDENCE	NUMBER OF EXCEEDANCES ALLOWED UNDER A 99%ILE CONFIDENCE
4	1	2
12	2	3
24	3	4

To prevent short-term pollution during the remaining 5% of the time, the Environment Agency normally sets a higher maximum concentration limit for that substance. A maximum limit is a concentration that no sample result must exceed. Maximum limits are often called upper tier or absolute limits and are used in conjunction with 95% ile limits.

The mean compliance limit is used to regulate substances with low acute toxicity (zinc). It aims to limit the overall load of the substance discharged to the environment. This limit is set as an annual (12 months) mean.

Enhancement Case (NES39)

TABLE 5: LIST OF SITE AND PERMITS

			STANDST NDLS	FILL LIMIT (UG	G/L)	RIVER NE	EDS LIMIT (UG	6/L)	NO DETERIC	RATION LIM	IT (UG/L) ND
Sowburn STW	SUBSTANCE	WINEP DRIVERS	95%ILE	UPPER TIER	BIO METALS (DISS MEAN)	95%ILE	UPPER TIER	BIO METALS (DISS MEAN)	95%ILE	UPPER TIER	BIO METALS (DISS MEAN)
owburn STW	Cypermethrin	WFD_ND_CHEM3 WFD_NDLS_CHEM2	0.001202	0.003922	-	-	-	-	0.00024951	0.00081404	-
Crookhall STW	Cypermethrin	WFD_IMP_CHEM WFD_NDLS_CHEM1	0.000574	0.00180128	-	0.000204	0.0006409	-	-	-	-
East Tanfield STW	Cypermethrin	WFD_NDLS_CHEM2	0.000291	0.00077026	-	-	-	-	-	-	-
Esh Winning STW	Cypermethrin	WFD_IMP_CHEM WFD_ND_CHEM3 WFD_NDLS_CHEM1	0.001206	0.0043998	-	0.000857	0.003127	-	0.001098324	0.004005973	3
Great Ayton GTW	Cypermethrin	WFD_NDLS_CHEM2	0.000995	0.002890	-	-	-	-	-	-	-
Hustledown STW	Cypermethrin	WFD_IMP_CHEM WFD_NDLS_CHEM1	0.001506	0.0051994	-	0.000271	0.00093608	-	-	-	-
Celloe STW	Cypermethrin	WFD_IMP_CHEM WFD_NDLS_CHEM1	0.000885	0.0023658		0.000364	0.00097272	-	-	-	-
Kelloe STW	Zinc (dissolved)	WFD_NDLS_CHEM2	-	-	21.6	-	-	-	-	-	-
Pittington STW	Cypermethrin	WFD_IMP_CHEM WFD_NDLS_CHEM1	0.005654	0.0249212		0.000858	0.003784	-	-	-	-
Pity Me STW	Cypermethrin	WFD_IMP_CHEM WFD_NDLS_CHEM1	0.001705	0.0055814		0.000158	0.0005175	-	-	-	-
ity Me STW	Zinc (dissolved)	WFD_IMP_CHEM WFD_NDLS_CHEM1	-	-	124.11	-	-	40.7	-	-	-

PR24

Enhancement Case (NES39)

			STANDST NDLS	FILL LIMIT (UC	G/L)	RIVER NE	EDS LIMIT (UG	6/L)	NO DETERIO	RATION LIMIT (UG/L) ND
Sedgefield STW	BORNER Sinc (dissolved)	WFD_IMP_CHEM WFD_NDLS_CHEM1	95%ILE	UPPER TIER	(DISS MEAN)	95%ILE	UPPER TIER	(DISS MEAN) 31.4	95%ILE	UPPER TIER	BIO METALS (DISS MEAN)
Sedgefield STW	Cypermethrin	WFD_IMP_CHEM WFD_NDLS_CHEM1 WFD_ND_CHEM3	0.0003	0.0009	-	0.000194	0.00058212	-	0.0001073641	0.0003221433	-
Sedgeletch STW	Cypermethrin	WFD_NDLS_CHEM2	0.000173	0.00065714	-	-	-	-	-	-	-
Sedgeletch STW	Zinc (dissolved)	WFD_NDLS_CHEM2			26.12						
Stokesley STW	Cypermethrin	WFD_NDLS_CHEM2	0.001066	0.0034224	-	-	-	-	-	-	-
Teesside Airport (Goosebeck) STW	Cypermethrin	WFD_NDLS_CHEM2	0.005771	0.0253466	-	-	-	-	-	-	-
Tudhoe Mill STW	Cypermethrin	WFD_NDLS_CHEM2	0.000228	0.00078786	-	-	-	-	-	-	-
Windlestone STW	Cypermethrin	WFD_NDLS_CHEM2	0.002742	0.0083354	n/a	-	-	-	-	-	-
Windlestone STW	Zinc (dissolved)	WFD_IMP_CHEM	-	-	-	-	-	58.3	-	-	-

Enhancement Case (NES39)

2.3.5 Detailed list of needs chemicals

Current performance for each site can be seen in the graphs provided in <u>Appendix D</u>.

NEED NAME	DESCRIPTION	SECONDARY WINEP	ROOT CAUSE
		DRIVER	
Bowburn STW	WFD_ND_CHEM3 Bowburn STW has a new cypermethrin	WFD_NDLS_CHEM2	Bowburn is already at best available technology (BAT) and
(cypermethrin)	non deterioration limit for 95%ile 0.00024951 ug/l and		current performance is not compliant with the new permit.
	Upper tier of 0.00081404 ug/l.		
Crookhall STW	WFD_IMP_CHEM Crookhall STW has a new cypermethrin	WFD_NDLS_CHEM1	Crookhall is already at best available technology (BAT) and
(cypermethrin)	permit of 0.00020424 ug/l 95%ile, and Upper tier of		current performance is not compliant with new permit.
	0.0006409 ug/l.		
East Tanfield STW	WFD_NDLS_CHEM2 East Tanfield STW has a new	N/A	East Tanfield is currently compliant with the new permit
(cypermethrin)	cypermethrin standstill limit for 95%ile 0.000291 ug/l and		(assessed on 99%ile confidence (look up table -LUT). Need to
	Upper tier of 0.00077026 ug/l.		monitor to ensure it stays within new permit.
Esh Winning STW	WFD_IMP_CHEM Esh Winning STW has a new	WFD_ND_CHEM3 and	Esh Winning CIP data suggests that further investment in
(cypermethrin)	cypermethrin improvement for 95%ile 0.000857 ug/l Upper	WFD_NDLS_CHEM1	Tertiary Solids Removal is required to meet the new permit.
	tier of 0.003127 ug/l.		
Great Ayton STW	WFD_NDLS_CHEM2 Great Ayton STW has a new	N/A	Great Ayton is currently compliant with new permit (assessed
(cypermethrin)	cypermethrin standstill limit for 95%ile 0.00099518 ug/l and		on 99%ile confidence look up table -LUT). Need to monitor to
	Upper tier of 0.0028902 ug/l.		ensure it stays within new permit.
Hustledown STW	WFD_IMP_CHEM Hustledown STW has a new	WFD_NDLS_CHEM1	Hustledown CIP data suggests that investment will not meet
(cypermethrin)	cypermethrin improvement limit for 95%ile 0.0002712 ug/l		the new permit.
	and Upper tier of 0.00093608 ug/l.		
	WFD_NDLS_CHEM1 Hustledown STW has a new		
	cypermethrin standstill limit or 95%ile 0.0015064 ug/l and		
	Upper tier of 0.0051994 ug/l.		

Enhancement Case (NES39)

NEED NAME	DESCRIPTION	SECONDARY WINEP DRIVER	ROOT CAUSE
Kelloe STW	WFD_IMP_CHEM Kelloe STW has a new cypermethrin	WFD_NDLS_CHEM1	Kelloe CIP data suggests that investment will not meet the net
(cypermethrin)	permit improvement limit for 95%ile 0.00036397 ug/l and		permit.
	Upper tier of 0.00097272 ug/l.		
Kelloe STW	WFD_NDLS_CHEM1 Kelloe STW has a new zinc	N/A	Kelloe CIP data suggests that investment will not meet the net
(zinc)	(dissolved) limit of 21.6 ug/l (Bio metals (diss mean)).		permit.
Sedgefield STW	WFD_IMP_CHEM Sedgefield STW has a new cypermethrin	WFD_ND_CHEM3 and	Sedgefield cypermethrin CIP data suggests that investment
(cypermethrin)	IMP limit of 95%ile 0.00019401 ug/l and Upper tier of	WFD_NDLS_CHEM1	will not meet the new permit.
	0.00058212 ug/l.		
Sedgefield STW (zinc)	WFD_IMP_CHEM Sedgefield STW a new Zinc (dissolved)	WFD_NDLS_CHEM1	Sedgefield zinc CIP data suggests that investment will not
	limit of 31.4 ug/l (Bio metals (diss mean))		meet the new permit.
Sedgeletch STW	WFD_NDLS_CHEM2 Sedgeletch STW has a new	N/A	Sedgeletch is currently compliant with the new cypermethrin
(cypermethrin)	cypermethrin standstill limit for 95%ile 0.00017346 ug/l and		permit (assessed on 99%ile confidence (look up table -LUT).
	Upper tier of 0.00065714 ug/l.		Need to monitor to ensure it stays within new permit.
Sedgeletch STW (zinc)	WFD_NDLS_CHEM2 Sedgeletch STW, Zinc (dissolved),	N/A	Sedgeletch zinc CIP data suggests that investment will not
	26.12 ug/l (Bio metals (diss mean))		meet the new permit
Stokesley STW	WFD_NDLS_CHEM2 Stokesley STW has a new	N/A	Stokesley is currently compliant with proposed permit
	cypermethrin standstill limit for 95%ile 0.0010659 ug/l and		(assessed on 99%ile confidence (look up table -LUT). Need to
	Upper tier of 0.0034224 ug/l		monitor to ensure it stays within new permit.
Tudhoe Mill STW	WFD_NDLS_CHEM2 Tudhoe Mill STW has a new	N/A	Tudhoe Mill is currently compliant with proposed permit
	cypermethrin standstill limit for 95%ile 0.00022828 ug/l and		(assessed on 99%ile confidence (look up table -LUT). Need to
	Upper tier of 0.00078786 ug/l		monitor to ensure it stays within new permit.
Windlestone STW	WFD_NDLS_CHEM2 Windlestone STW has a new	N/A	Windlestone is currently compliant with proposed permit
(cypermethrin)	cypermethrin standstill limit for 95%ile 0.0027421ug/l and		(assessed on 99%ile confidence (look up table -LUT). Need to
	Upper tier of 0.0083354 ug/l		monitor to ensure it stays within new permit.
Windlestone STW	WFD_IMP_CHEM Windlestone STW has a new zinc	N/A	Windlestone zinc – would not meet new permit, EA permit
(zinc)	(dissolved), 58.3 ug/l (Bio metals (diss mean))		required discussions ongoing.
IORTHUMBRIAN WATER (iwing wai			PAGE 19 OF

Enhancement Case (NES39)

NEED NAME	DESCRIPTION	SECONDARY WINEP	ROOT CAUSE
		DRIVER	
Pity Me STW	WFD_IMP_CHEM Pity Me STW has a new cypermethrin,	WFD_NDLS_CHEM1	Site transferred in AMP7, monitoring is required at new
(cypermethrin)	95%ile 0.0001584ug/l standstill limit and Upper tier of		discharge location to ensure EQS at new discharge is not a
	0.0005175 ug/l.		risk
Pity Me STW	WFD_IMP_CHEM Pity Me STW a new zinc (dissolved),	WFD_NDLS_CHEM1	AMP7 – decision better to transfer
(zinc)	40.7 ug/l (Bio metals (diss mean))		Site transferred in AMP7, monitoring is required at new
	WFD_NDLS_CHEM1 Pity Me STW has a new Zinc 124.11		discharge location to ensure EQS at new discharge is not a
	ug/l (Bio metals (diss mean))		risk
Pittington STW	WFD_IMP_CHEM Pittington STW has a new cypermethrin	WFD_NDLS_CHEM1	Site transferred in AMP7, monitoring is required at new
(cypermethrin)	standstill limit or 95%ile 0.00085849 ug/l and Upper tier of		discharge location to ensure EQS at new discharge is not a
	0.003784 ug/l.		risk
	WFD_NDLS_CHEM1 Pittington STW a new cypermethrin		
	standstill limit for 95%ile 0.005654 ug/l and Upper tier of		
	0.0249212 ug/l.		
Teeside Airport	WFD_NDLS_CHEM2 Goosebeck STW has a new	N/A	Site transferred in AMP7, monitoring is required at new
(Goosebeck STW)	cypermethrin standstill limit for 95%ile 0.0057711 ug/l and		discharge location to ensure EQS at new discharge is not a
(cypermethrin)	Upper tier of 0.0253466 ug/l.		risk

Enhancement Case (NES39)

2.4. NEED FOR ENHANCEMENT EXPENDITURE IN AMP8

We have not included enhancement investment for activities which were funded at previous price reviews.

PR14 funded phase 2 of the National Chemicals Investigation Programme (CIP2) which occurred in AMP6. The programme sampled 74 substances at over 600 Wastewater Treatment Works aiming to better understand the potential scale of the challenge.

PR19 then funded phase 3 of the National Chemicals Investigation Programme (CIP3) which occurred between 2020 and 2022. This monitored trends in chemicals over time to assess risks to WFD compliance, effectiveness of chemical bans and to fill gaps in knowledge about the fate of chemicals through the treatment process. We also carried out specific technology trials at wastewater treatment works to determine potential solutions to remove trace chemical substances before treated wastewater is released into rivers.

The funding we have included in our plan for AMP8 is to address the needs which have been identified from phase 2 and 3. These are either statutory obligations required prior to April 2030 or investigation to inform actions in AMP9, hence the information is needed within AMP8.

2.4.1 Base vs enhancement expenditure

The proposals to ensure we remain at a load standstill, no deterioration, are new for this AMP. Our investigations and trials are also new needs and there is no overlap with base investment. The following table sets out our assumptions for base and enhancement cases.

BASE ENHANCEMENT Chemicals (no deterioration) • A new statutory obligation as defined by the WINEP • Work to effectively manage our wastewater effluent for existing nutrient and chemical permits • A new statutory obligation as defined by the WINEP • A new Defra approved activity as defined by the WINEP driver guidance. • A new Defra approved activity as defined by the WINEP • Investigations • Water industry collaborative investigations and trials into new areas not previously funded. This includes the next phase of CIP, a statutory obligation.

TABLE 8: – ASSUMPTIONS FOR BASE AND ENHANCED INVESTMENT

There is no base expenditure proposed for AMP8 that will contribute to addressing the needs related to these drivers.

2.5. ALIGNMENT TO THE LONG-TERM STRATEGY

Our investment in investigations is in the core pathway. What we find through the investigations will inform future investment and decision points on the core and adaptive pathways.

This investment is needed as part of the 'protecting the local environment' investment area under our <u>Long-Term</u> <u>Strategy</u> (LTS) core pathway. We consider this as low/no regret investment because it is needed to meet statutory requirements in 2025-30. We have a legal obligation to deliver £28m of this £32m investment by 2030 as most of this investment is needed to meet statutory requirements for 2025-30 within the WINEP. The remaining £4m on investigations is informing future regulation and we consider to be "no regrets" spend on our core pathway. We therefore consider this investment necessary in 2025-30 to deliver our LTS.

As this enhancement case addresses investigations informing future needs and investments, there are likely to be further requirements in future investment periods. We expect environmental challenges around anti-microbial resistance, persistent organic pollutants and microplastics in the future – which will make some contribution to improving river health, such as removing chemicals. The investment that is needed will depend on the results of current and future investigations, and whether alternative solutions can be implemented such as banning certain chemical products or making behavioural or other product changes to avoid pollutants entering wastewater. We expect that these investments are only needed under some of the scenarios in our long-term delivery strategy – and we have set this trigger point for investment for 2027, with investment beginning from 2032, so that we can understand the impact of technology or social changes.

In addition to this, we will need to review the impacts of climate change, legal changes, and technology on the need for further investment in these areas before the price reviews in 2029 and 2034.

2.6. CUSTOMER SUPPORT FOR THE NEED

Our plan is supported by our customers, both in the near- and long-term aspirations. We see evidence that our customers support environmental protection. They understand the role we play in investigating the best actions for the longer term.

These projects are a consequence of statutory requirements and requirements recommended by the EA. We have not discussed the specific needs with customers. That is because our research shows that customers expect us to meet our statutory obligations, and it is not appropriate to discuss delaying or phasing investment where there are no alternatives to meet the statutory requirement to deliver our part of WINEP.

Our research shows that customers support investment in the environment, including wider environmental and social benefits – though they do not necessarily think they should always pay for this through their water and wastewater bills. In particular, our customers rank dealing with sewage effectively and improving the qualities of rivers as two of their "medium"

priorities (prioritisation of common PCs, NES44). ESSEX& SUFFOLK NORTHUMBRIAN WATER living water WATER living water

In our <u>qualitative affordability and acceptability testing</u> (NES49), customers supported our "preferred" plan which included these improvements in treatment of chemicals and investigations into emerging contaminants. Customers found this plan acceptable because it focused on the right things, is good for future generations, and is environmentally friendly. Customers who did not find this plan acceptable said that this was expensive, and water companies should pay out of their own profits. We did not ask specifically about chemicals and emerging contaminants in wastewater (as our individual items were limited only to the largest investments), but customers supported maintaining rivers and reducing pollution (NES49). In our <u>quantitative research</u> (NES50), 74% of customers supported our preferred plan, including this investment.

Customers also identified "pollution leading to dead fish in rivers" and "algae choking plants and wildlife" as medium priorities in our <u>DWMP research in 2020</u>, similar to storm overflows – but not as high as chemicals and microplastics in wastewater, which one participant described as "the next pandemic".

2.7. FACTORS OUTSIDE MANAGEMENT CONTROL

We understand that there are factors outside of management control that can influence the need for our investigations. The scope and cost are managed through our approach to the options in our plan. We are clear about the current need reflecting both environmental and public desire to better understand the impact of the contaminants in our system.

We understand that the drivers for chemical removal come from the industry studies which we undertake in the previous planning period. This gives us confidence that the requirements are known, despite the occurrence of contaminants being out of our control.

Microplastics is currently a hot topic in the media, this could lead to an increased focus on the topic. We are addressing this through approaching the investigations and trials as an industry to better use our combined resources and knowledge. There is a risk that the abundance of microplastics in sludge will impact our ability to send sludge to land. We are addressing this area through an investigations into microplastics within our biosolids included within this case.

Enhancement Case (NES39)

3. BEST OPTION FOR CUSTOMERS

3.1. PROCESS FOR IDENTIFYING THE BEST OPTION FOR CUSTOMERS

We can demonstrate our process and how it gives the best option for our customers. Our value framework means that we are assessing monetised value across the options we have developed. We can show how our selected options will give the best value to our customers.

3.1.1 WINEP options development principles

We have followed the WINEP options development guidance⁸, the principles of which are summarised in Table 9.

Expectation	How this has been met
Environmental net gain	We have carried out an assessment of environmental net gain options by assessing the potential
	environmental impacts including the natural environment, net zero, catchment resilience, access,
	amenity, and engagement of each option and monetised alongside the whole life cost, choosing the one
	that provides the greatest overall environmental benefit/cost ratio (NPV)
Natural capital	We have assessed each of our options against the full range of natural capital metrics and wider
	environmental objectives as part of our WINEP assessment to the Environment Agency. The measures
	that apply to our options are shown in Table 3. These have been quantified through our benefits
	assessment which is described in section 3.2.4, 3.3.6 and .3.5.4
Catchment and nature-	We have considered a range of nature-based solutions such as integrated constructed wetlands, reed
based solutions	beds, evaporation, facultative lagoons and infiltration fields as shown in Figure 5.
Proportionality	We have taken a proportional approach to options development based on green book principles. Where
	there are more than three traditional treatment options, we have screened out those which have obviously
	less natural capital benefits, higher costs and higher carbon without undertaking a full benefits and cost
	assessment, which would require a level 2 optioneering scope. In the case of septic tanks, the monetary
	value of the water quality benefit is far more than the other natural capital benefits as the septic tanks
	tend to be very small. Further information is contained in the remainder of section 3.
Evidence	The evidence to our options is described within Section 3 and 4 of this document. We clearly record the
	reasons for discarding options. Further supporting evidence of our solutions development and our data
	sets is available in our Options Development Report and Options Assessment. Our WINEP submission
	has been independently audited by a third party (Jacobs) and there are no outstanding actions
Collaboration	We have collaborated with the Environment Agency to define the list of sites. Collaboration with local
	stakeholders and planning authorities will occur as part of the delivery process.

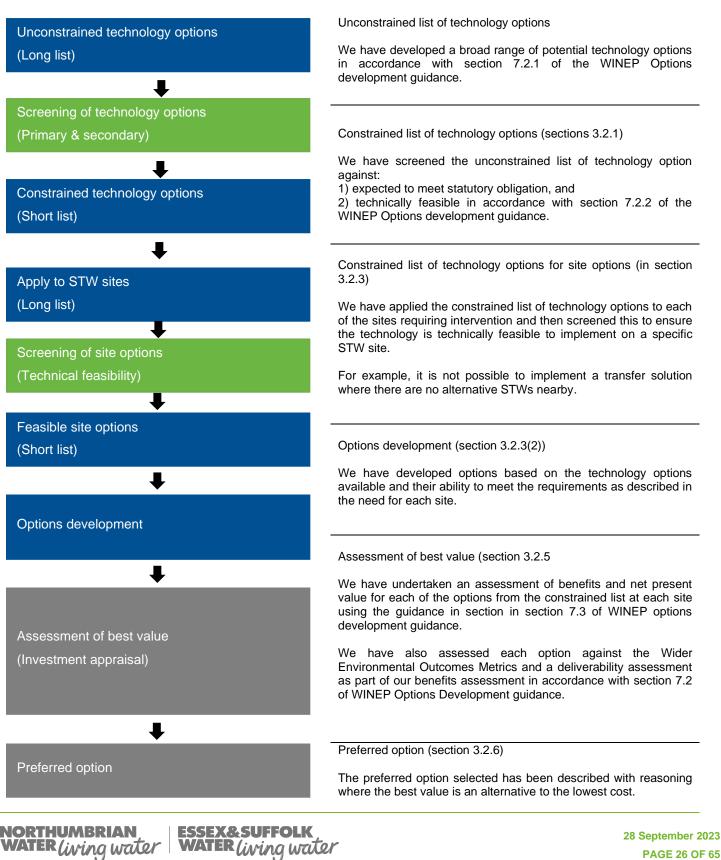
TABLE 9: WINEP OPTIONS DEVELOPMENT PRINCIPLES

⁸ WINEP options development guidance

PR**24**

3.1.2 Hierarchy for identifying unconstrained options

We have built our plan by considering a broad range of options. All options are real, deliverable and meet the needs defined in the WINEP guidance.


We have a structured approach for categorising and assessing options to meet each need which make sure a consistent approach across all our investment needs regardless of driver.

- Eliminate identification of processes and practices that can be stopped possibly by stakeholder management or other, and by challenging the need for existence. Eliminate options are likely to have the lowest costs to deliver the benefit. In this case options include changes to permits.
- 2. Collaborate work with stakeholders to re-assign the issue or co-fund. Costs can be shared with third parties either to deliver the same or an extra level of social and environmental benefit.
- 3. Operate improved operational management practices to enhance existing capacity.
- 4. Invigorate invest in the existing infrastructure to improve performance. These options will provide an increased level of benefit but may be of a lower cost than fabricate options. In this case new infrastructure would be required to meet the standard for secondary treatment, so there are no options for invigorate.
- 5. Fabricate new assets to augment or replace existing. These options are likely to have the highest costs. Green options will have lower carbon and potentially higher biodiversity and amenity benefits. Traditional grey options are likely to have highest certainty that service-related benefits will be realised. Innovative options have the potential for greater benefits and lower costs but have the lower certainty that benefits will be realised.

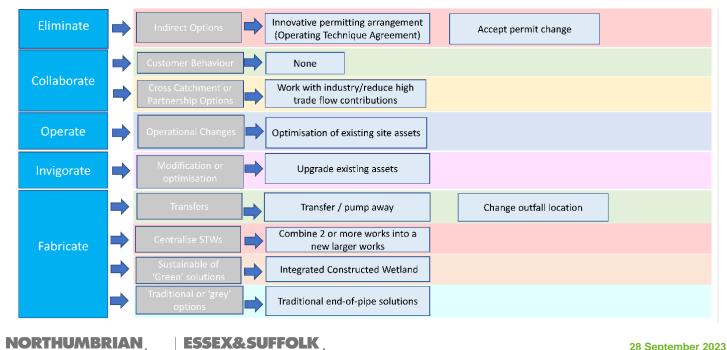
Figure 2 shows our process for identifying the best option for a single site which is based on the principles of the HM Treasury, The Green Book: Central Government Guidance on Appraisal and Evaluation and the WINEP Options Development Guidance⁹. A full description of how this has been applied is contained in the following sections.

Enhancement Case (NES39)

FIGURE 1: PROCESS FOR DEVELOPING AND FILTERING OPTIONS

PAGE 26 OF 65

3.2. OPTIONS FOR CHEMICALS


3.2.1 Broad range of unconstrained options - load standstill

We have built our plan by considering a broad range of options. All options are real, deliverable and meet the needs defined in the WINEP guidance.

To determine the best option for customers to address the need, we have followed an options identification and screening process. Firstly, we identified a broad list of options, as shown in Appendix B, which could be considered to reduce chemicals at wastewater treatment works. Our interventions hierarchy includes operational actions, nature-based solution, influencing customer behaviour. Our hierarchy focuses on minimum and low carbon interventions first.

The long list of unconstrained options has been screened to provide a shorter unconstrained list and then a constrained list of options for the chemicals drivers. Decision trees were developed to use on a site-by-site basis to filter the constrained options list to site specifics and identify feasible options for costing and further assessment.

From the previous Chemicals Investigation Programme (CIP) trials we have determined that conventional treatment methods, which maximise biological treatment and provision of tertiary solids removal, provide Best Available Technology (BAT) for cypermethrin removal. Where this level of treatment is provided by AMP7 investment we propose to monitor performance following that investment to inform AMP8 investment decisions. Where sites fail to meet compliance despite installation of BAT, NW's preferred option is to relocate the outfall to provide increased dilution. No river modelling has been carried out at this stage for these options.

WATER living water

WATER living water

FIGURE 3: INTERVENTIONS FRAMEWORK CONSIDERING RANGE OF APPLICABLE INTERVENTIONS FOR CHEMICALS

28 September 2023 PAGE 27 OF 65

3.2.2 Transfers

We have identified a number of sites for cypermetherin and zinc permits that are due to be transferred to larger wastewater treatment works. During AMP7 there are three sites:

- Pittington STW has been transferred to Sherburn WwTW due to deterioration in the site assets and the high cost to refurbish the works. There is also an environmental benefit by transferring Pittington STW to Sherburn STW.
- Pity Me STW is due to be transferred to Brasside STW due to population growth within the catchment.
- Goosebeck (Teeside Airport) STW is due to be transferred to Stressholme STW as it is more cost effective to transfer the crude sewage than treat for a tighter phosphorus permit.

The proposed option for these sites will be to monitor both upstream and downstream of the river at the receiving wastewater treatment works discharge point to confirm chemical concentration will not impact the watercourse.

During AMP8 there are two sites:

- Sedgeletch STW is being transferred to the Wear estuary. This is more cost effective and provides greater environmental benefits to transfer Sedgeletch STW rather than upgrade the works to meet the tightened phosphorus permit.
- Bowburn STW is to be transferred to the Wear. This is more cost effective and provides greater environmental benefits rather than upgrading the works to meet the tightened phosphorus permit and growth requirements.

These are included in the options screening for completeness, the AMP8 transfers are included as the preferred options.

3.2.3 Primary and secondary screening of options

(1) Results of primary screening

For each of the needs we undertook primary screening to determine a shorter list of options based on two criteria:

- 1) Does the option meet the need?
- 2) is the option technically feasible to implement?

The results of the primary screening of the need are shown in Table 10. As part of the options development, we have aligned permitting options to guidance that exists for flexible permitting. This guidance asks us to use four approaches, as set out in Table 10.

Enhancement Case (NES39)

Option	Summary	Regulatory approach	
Approach 1	Catchment permitting – with individual site limits	Regulated directly in the permit in a conventiona	
Approach 2	99%ile confidence for the 'look up table'		
Approach 3	Best Endeavours	Regulated through operating technique agreements (OTA) linked to the permit via the operating	
Approach 4	Maximising Benefits of WINEP3	— techniques condition	

Approach 1 detail

Under this option water companies are able to 'trade' permitted discharge loads between sites within the catchment to achieve the water quality objectives whilst reducing cost, carbon emissions and regulatory risk.

Approach 2 detail

As described in section 2.3.4, this approach changes the number of allowable exceedances allowed under a 99% confidence.

Approach 3 detail

This option reflects the uncertainty in managing chemicals and could be widely applied to sites where there is a reasonable prospect of achieving a stringent improvement permit limit for chemicals (based on the outputs of the Feasibility and Pilots Technology trials completed as part of the CIP Technology Trials 2015 to 2020). This can also be considered where the technology trials either did not identify a technology that would consistently reduce the levels of a chemical to achieve the proposed river need/improvement permit limits or that there is insufficient evidence that the proposed permit limits can be consistently and reliably achieved.

Approach 4 detail

This option recognises that many sites for which new substance limits are being proposed are already subject to improvement obligations (mainly WFD phosphorus) in WINEP3 and that technologies to be deployed for phosphorus removal in AMP7 have the potential to deliver significant hazardous substance removal.

This terminology is used within the option descriptions where they have been assessed as an available option.

OPTIONS TITLE	MEETS STATUTORY	TECHNICALLY	REASON REJECTED
	OBLIGATION?	FEASIBLE?	
Flexible permitting: Approach 2	Yes	Yes	Carried forward - Windlestone, East Tanfield, Great Ayton, Sedgeletch
Permit change. Monitoring at all sites will determine whether the	e		(cypermethrin and zinc), Tudhoe Mill, Bowburn, Kelloe zinc, Stokesley
permit can be achieved with existing assets at the end of AMP7			WwTW, Windlestone
The decision to accept permit or deploy an alternative will be			
taken at this point.			
Flexible permitting: Approach 3	Yes	Yes	Carried forward - Sedgefield, Esh Winning, Crookhall, Hustledown,
Site will be at Best Available Technology with an Improvement			Kelloe
driver. Apply for Operation Technique Agreement as			
mechanism for permitting			OTAs will be combined with alternatives to replace/retrofit/expand
			existing processes, due to the uncertainty associated around the
			potential benefits of those alternatives.
Trade permit variation	No	No	Discarded – Cypermethrin is predominately from domestic supplies so
Treatment of point sources by imposing trader permits. This will			will be difficult to completely remove from wastewater. The CIP 2 and 3
require treatment on the trader site before discharging			trials show no evidence of Cypermethrin coming from industrial sources.
			Zinc concentration is too varied (industrial and domestic) to effectively
			reduce
Operational solution	Yes	No	Discard – Optimisation of existing site assets will not achieve the
Optimisation of existing site assets to achieve new permit to			required reduction in cypermethrin or zinc to meet the permits.
minimise/remove need for new assets			
Replace/retrofit/expand existing primary/secondary	Yes	Possible	Carried forward - Esh Winning, Crookhall, Hustledown, Kelloe,
treatment processes			Windlestone, Bowburn, Sedgefield, Sedgeletch, East Tanfield, Great
Introduce a new treatment stage on site, or increase the			Ayton, Stokesley, Tudhoe Mill
capacity of existing treatment processes. Available options are			Most sites will have the maximum biological capacity and tertiary
additional ASP lanes, NSAF units or tertiary solids removal in			treatment by the end of AMP7, providing limited scope for expansion.
parallel with existing or adding a new stage. Or replace			Replacing secondary filters with ASP may provide some improvement in
secondary biological filters with an activated sludge plant (ASP)			
NORTHUMBRIAN WATER living water WATER living water	e		28 September 202 PAGE 30 OF 6

PR24

Enhancement Case (NES39)

OPTIONS TITLE	MEETS STATUTORY	TECHNICALLY	REASON REJECTED
	OBLIGATION?	FEASIBLE?	
			cypermethrin removal and will result in a significant increase in
			operational carbon.
Transfer/pump away	Yes	Yes	Carried forward - Pity Me, Pittington & Goosebeck transferred in AMP
Flow transfer from 1 or more smaller works into an existing			7.
arger works			
Change outfall location	Yes	Yes	Carried forward - Bowburn, Crookhall, Kelloe, Sedgefield, Hustledown
Move FE outfall so more relaxed permit is acceptable			Sedgeletch
(discharge into less sensitive or larger water course)			
Centralise STWs	No	No	Discarded - Sites are large capacity WwTWs which are performing well
Combine two or more STW into a new larger works to achieve			Not cost effective to abandon treatment plants and build a very large
efficiencies of scale			new WwTW that would not guarantee new cypermethrin permits.
Source control (diffuse source pollution)	No	No	Discarded – High Zinc concentrations are a legacy of the mining
Control and treat diffuse pollution sources to sewer			industry and cannot be removed.
			Source of Cypermethrin concentration is too varied to effectively reduce.
Integrated constructed wetland (ICW)	No	No	Discarded - technology unproven within the water industry to guarantee
Create ICW with multiple benefits as treatment solution (only			permit value can be achieved.
applicable where less stringent permit limits or existing			
treatment solution that needs to be tighter)			
Best Available Technology (BAT): Aerated Reedbed	No	No	Discarded - Reedbeds require a large area and are generally not
(constructed wetland)			feasible for PE above 2,000. Removal of cypermethrin is 55% with 26%
A reed bed system wastewater flows continuously through the			uncertainty.
support medium, made up of a gravel base planted with the			
common reed. The area around the reeds becomes populated			
with both aerobic and anaerobic bacteria. It is these bacteria			
that treats the incoming wastewater.			
BAT: Deep Bed Filter	Yes	Yes	Carried forward - Esh Winning.
NORTHUMBRIAN WATER(iving water WATER(iving water			28 September 202 PAGE 31 OF 0

Enhancement Case (NES39)

OPTIONS TITLE	MEETS STATUTORY	TECHNICALLY	REASON REJECTED
	OBLIGATION?	FEASIBLE?	
Physical separation process, where solids are captured in a bee	t		There are a number of deep bed filters which offer around 60%
of granular media such as sand. Solids are removed by			cypermethrin removal. Installing an additional stage of solids removal
backwashing cloth discs			after an existing process may have limited impact on cypermethrin.
BAT: Ferric dosing	Possible	No	Discarded – Many sites already have, or will have by the end of AMP8,
Ferric sulphate solution dosed to precipitate phosphorus within			ferric dosing for P removal. Results for cypermethrin removal are
the wastewater. Phosphorus removed as a sludge from the			variable and addition of ferric increases soluble zinc, making this option
process.			unsuitable for sites with cypermethrin and dissolved zinc permits
BAT: Activated Sludge Plant	Possible	Possible	Carried Forward – Esh Winning, Crookhall,
A wastewater treatment process, well established within the			Replacing filters with activated sludge plant (ASP) will increase
Water Industry which employs bacteria			cypermethrin and zinc removal, however the exact improvement is not
			easily quantifiable and the change in process incurs a significant
			increase in operational carbon. Conversion of ASP to biological
			phosphorus removal will reduce ferric use on sites where ferric is
			contributing to elevated dissolved zinc in the final effluent.

*Chem 10 and 11 reports

28 September 2023 PAGE 32 OF 65

Enhancement Case (NES39)

(2) Investigation and operational interventions

Table 12 shows the constrained options generated through the review process of assessing each carry forward option against the sites needing intervention and understanding the feasibility of each option at each specific site.

TABLE 12: CHEMICAL LOAD STANDSTILL CONSTRAINED ENGINEERING OPTIONS

Wastewater Treatment Works	Accept permit- monitor risk	Innovative permitting Arrangement	Replace/retrofit/expand existing primary/secondary treatment processes		Change outfall location	: BAT: Deep Bed Filter	BAT: Activated Sludge
Bowburn STW (cypermethrin)	Yes	No	Yes	No	Yes	No	No
Crookhall STW (cypermethrin)	No	Yes	Yes	No	Yes	No	Yes
East Tanfield STW (cypermethrin)	Yes	No	Yes	No	No	No	No
Esh Winning STW (cypermethrin)	No	Yes	Yes	No	No	Yes	Yes
Great Ayton STW (cypermethrin)	Yes	No	Yes	No	No	No	No
Hustledown STW (cypermethrin)	No	Yes	Yes	No	Yes	No	No
Kelloe STW (cypermethrin)	No	Yes	Yes	No	Yes	No	No
Kelloe STW (zinc)	Yes	No	Yes	No	Yes	No	No
Sedgefield STW cypermethrin)	No	Yes	Yes	No	Yes	No	No
Sedgefield STW (zinc)	No	Yes	Yes	No	Yes	No	No
Sedgeletch STW (cypermethrin)	Yes	No	Yes	No	Yes	No	No
Sedgeletch STW (zinc)	Yes	No	Yes	No	Yes	No	No
Stokesley STW	Yes	No	Yes	No	No	No	No
Tudhoe Mill STW	Yes	No	Yes	No	No	No	No
Windlestone STW (cypermethrin)	Yes	No	Yes	No	No	No	No
Windlestone STW (zinc)	Yes	No	Yes	No	No	No	No

ESSEX&SU

Wastewater Treatment Works	Accept permit- monitor risk	Innovative permitting Arrangement	Replace/retrofit/expand existing primary/secondary treatment processes	Transfer/pump away	Change outfall location	BAT: Deep Bed Filter	BAT: Activated Sludge
Pity Me STW (cypermethrin)	No	No	No	Yes	No	No	No
Pity Me STW (zinc)	No	No	No	Yes	No	No	No
Pittington STW (cypermethrin)	No	No	No	Yes	No	No	No
Teeside Airport (Goosebeck STW) (cypermethrin)	No	No	No	Yes	No	No	No

This shows where there are multiple options and hence the need for a least cost/best value approach. It also shows where there are limited options and hence leaves us with 'do' or 'do nothing' options.

3.2.4 Best value

Our value framework is embedded into our portfolio optimisation tool and contains a mixture of benefits which reflect measures which relate benefits to performance commitments or other social and environmental benefits. First, we score the impact of continuing business as usual and then we score each of the options. Benefits are scored over time for a 30-year horizon. This scoring takes into account the certainty of benefits being realised for different types of options.

3.2.5 Benefit scoring

Our value framework is embedded into our portfolio optimisation tool and contains a mixture of benefits which reflect measures which relate benefits to performance commitments or other social and environmental benefits. First we score the impact of continuing business as usual and then we score each of the options. Benefits are scored over time for both a 30 year and 40-year horizon. This scoring takes into account the certainty of benefits being realised for different types of options.

Enhancement Case (NES39)

Value measures	Description	Unit	Value	Value source
Improved Treatment Works Performance	Number of non- compliance events	£/Isolated Upper Tier Failure (250- 50000 Population)	£40,979.29	NWL Value Framework
Improved Treatment Work Performance	Number of non- compliance events	£/Isolated Upper Tier Failure (50000+ Population)	£52,896.61	NWL Value Framework
Operational Carbon	t/CO2e /year	tCO2e	£256.2*	NWL Value Framework
Embedded Carbon	t/CO2e /year	tCO2e	£256.2*	NWL Value Framework

TABLE 13: RANGE OF BENEFITS IDENTIFIED FOR CHEMICALS REMOVAL DRIVERS

Notes: *£ value per tonne of CO2e in 2025/26, annual increase (varying rate) reaching £378.6/t CO2e in 2024/55

In Table , we show that first we score the impact of continuing business as usual and then we score each of the relevant options. Benefits are scored over time for a 30-year time horizon. This scoring takes into account the certainty of benefits being realised for different types of options. Each of the technology options for an individual site are designed to deliver the same permit compliance, because the requirement is to deliver a treatment standard to meet the current baseline levels. The differentiators for this business case are carbon and cost.

TABLE 14: BENEFITS FROM WINEP WIDER ENVIRONMENTAL OUTCOMES AND NORTHUMBRIAN WATER'S VALUE FRAMEWORK FOR WFD_NDLS_CHEM1

Options carried	NWG Value framework measures	WINEP Wider Environment Outcomes	
Continue business as usual As is position	N/A	N/A	
Flexible permitting: Approach 2 Permit change No build solution	Embedded Emissions Improved Treatment Works Performance	Net Zero	
Flexible permitting: Approach 3 Individual sites will have a permit issued with the standstill limit required and will also include an Operating Techniques Agreement that will specify target permit limits to be achieved, caveated by a clause stating that the Company will endeavour to remove as much of the substance as is reasonably practicable.	Embedded Emissions Improved Treatment Works Performance	Net Zero	

NORTHUMBRIAN WATER(iving water | WATER(iving water

28 September 2023 PAGE 35 OF 65

Enhancement Case (NES39)

Replace/retrofit/expand existing primary/secondary treatment processes	Embedded Emissions Improved Treatment Works Performance	Net Zero
Introduce new treatment stage on site	renonnance	
Transfer flow	Embedded Emissions	Net Zero
Flow transfer from 1 or more smaller works into an existing larger works	Improved Treatment Works Performance	
Change outfall location	Embedded Emissions	Net Zero
Individual sites will have pipework to divert current outfall to a location with lighter load restrictions	Improved Treatment Works Performance	5
BAT: Deep bed filter	Embedded Emissions	Net Zero
Physical separation process, where solids are captured in a bed of granular media such as sand. Solids are removed by backwashing cloth discs	Improved Treatment Works Performance	
BAT: Activated sludge plant	Embedded Emissions	Net Zero
A wastewater treatment process, well established within the Water Industry which employs bacteria	Improved Treatment Works Performance	;

3.2.6 Investment appraisal

Costs and benefits have been adjusted to 2022-23 prices using the CPIH Index financial year average. The impact of financing is included in NPV calculation. Capital expenditure has been converted to a stream of annual costs, where the annual cost is made up of depreciation/RCV run-off costs and allowed returns over the life of the assets. Depreciation (or run-off) costs are calculated using the straight-line depreciation over the appraisal period. To discount the benefits and costs over time, we have used the social time preference rate as set out in 'The Green Book'.

We have used our Copperleaf asset management system to optimise our plan and select a best value plan. Our best value and least cost selection process has been assured by our third-party assurer, through the price review process.

Our optimisation methodology calculates Net Present Value (NPV) of the investment using the cost and benefits for each option. The present value is calculated by combining the profile of the present value of benefits and the profile of present value of costs over the appraisal period. Across the 15 sites there are 19 needs, for 18 of these, the least cost and best value alternatives were the same. The full results of this assessment are shown in Appendix B, and the preferred options are shown in Table 15. The table shows the NPV for the options to meet the WFD_NDLS_CHEM1 WINEP driver.

28 September 2023 PAGE 36 OF 65

Enhancement Case (NES39)

TABLE 157: CHEMICAL PREFERRED OPTIONS

Site Name	Chemical	Option	NPV	Least Cost	Chosen Option
Esh Winning STW	Cypermethrin	Flexible permitting (approach 3), Expand	-2.138	Y	Preferred option
-		Tertiary treatment with new TSR			
Crookhall STW	Cypermethrin	Flexible permitting (approach 2)	3.402	Y	Preferred option
Hustledown STW	Cypermethrin	Flexible permitting (approach 3)	0.062	Ν	Preferred option
Kelloe STW	Cypermethrin	Flexible permitting (approach 3)	0.067	Y	Preferred option
Pittington STW	Cypermethrin	River monitoring at Sherburn	0.221	Y	Preferred option
Pity Me STW	Zinc	AMP7 transfer, permit removed	0.000	Y	Preferred option
Sedgefield STW	Zinc	Flexible permitting (approach 3)	0.106	Y	Preferred option
Pity Me STW	Cypermethrin	AMP7 transfer, permit removed	0.000	Y	Preferred option
Bowburn STW	Cypermethrin	Change outfall location to River Wear	-13.085	Y	Preferred option
Sedgefield STW	Cypermethrin	Flexible permitting (approach 3)	0.067	Y	Preferred option
East Tanfield STW	Cypermethrin	Flexible permitting (approach 2)	0.187	Y	Preferred option
Goosebeck STW	Cypermethrin	AMP7 transfer, permit removed	0.000	Y	Preferred option
Great Ayton STW	Cypermethrin	Flexible permitting (approach 2)	4.231	Y	Preferred option
Kelloe STW	Zinc	Flexible permitting (approach 3)	0.106	Y	Preferred option
Sedgeletch STW	Cypermethrin	Flexible permitting (approach 2)	0.418	Y	Preferred option
Sedgeletch STW	Zinc	Change outfall location to River Wear	-12.368	Y	Preferred option
Stokesley STW	Cypermethrin	Flexible permitting (approach 2)	0.187	Y	Preferred option
Tudhow Mill STW	Cypermethrin	Flexible permitting (approach 2)	0.187	Y	Preferred option
Windelstone STW	Cypermethrin	Flexible permitting (approach 2)	1.201	Y	Preferred option

The one option where we are proposing an alternative to the least cost and the best value option is for Hustledown STW. The flexible permit (approach 3) is a higher cost to approach 2, it also presents a lower overall value from a carbon and cost perspective. The rationale for the selection of the preferred option is that is gives greater flexibility to better understand the technologies that have been put in through AMP7 and understand how our permitting can adapt accordingly ensuring that we meet the required levels.

3.2.7 Options for investigations

CIP4 and MICROPLASTICS

In line with the WINEP guidance there is no requirement to develop an unconstrained options list for investigations. CIP is a statutory requirement; the only option is to undertake the investigations.

28 September 2023 PAGE 37 OF 65

Enhancement Case (NES39)

The following description of the CIP4 investigation approach is taken from the UKWIR CIP4 pre-scoping technical note¹⁰.

CIP4 builds on over two decades of experience from the development of company-specific investigations that contribute to the collaborative national UKWIR programmes of WW17, CIP1, CIP2 and CIP3.

Following on from the programme set out in CIP3, CIP4 again comprises multiple elements. Compared with CIP1 and CIP2, where fewer but more substantial components were included, these elements are more diverse in aim and scope and have been proposed following the success and findings of CIP3.

CIP4 goes beyond previous monitoring programmes as it includes new elements dealing with fish, plant and sediment sampling. Therefore, there is the need to involve research or academic organisations in addition to commercial laboratories. This is akin to the investigation research studies delivered in the CIP3 programme and will require the participation of subject matter experts for, for example, microplastics and AMR.

Microplastics investigations are also an industry collaboration, the scope of which is to look at the prevalence of microplastics in sludge across all processes and process types within the industry. This is different to the investigation described as part of our biosolids investigations below, that looks at how microplastics from our customers are processed through our AAD plant and disposed of on land in our region.

N-TAL

In line with the WINEP guidance there is no requirement to develop an unconstrained options list. For N-TAL the solution types are limited to do nothing, or three trials. To develop our list of technology trials we engaged with the joint National Steering Group – Natural England, EA, and other water companies for N-TAL. We were tasked with using the Environment Agency's collaborative report released in March 2021¹¹ as our starting point to choose our trial technologies. We are looking to share out trial data with other WASCs also trialling technology and have agreement from Severn Trent already, this will give additional strength to the investigation findings.

Three technology trials are required per WASC. Through an internal workshop we identified algae, Nuvoda and an integrated constructed wetland (ICW):

 Algae based solution utilising our current algae trials. We have an algae-based treatment set up at pilot scale on our Bran Sands site. The plant would be extended and duplicated to run 2 streams in parallel, allowing total nitrogen analysis and optimisation on both a side stream sludge liquor and final effluent.

¹¹ Collaborative Periodic Review (PR) 24 Trials, Environment Agency March 2021

WATER living water

¹⁰ UKWIR CIP4 Pre-scoping technical note, SNC Lavalin

Enhancement Case (NES39)

- Nuvoda MOB process (mobile organic biofilm). This process uses an organic cellulose material to ballast small granules providing a surface for simultaneous nutrient removal. The technology has previously been used in the US and has good feedback on improving process stability as well as achieving low Total N and P results. The addition of this natural product also allows an increased capacity without building additional assets. Additional benefits improved solids settlement, improved carbonatious treatment, additional capacity, provides a platform to enhance nitrification and denitrification leading to less nitrogen, protection of landbank, and resilience in supply chain. The N-Tal trial will also allow confidence in the technology which has potential to benefit other sites in the future.
- Monitoring efficiency of an **Integrated Constructed Wetland** for total N removal. We will monitor our Low Wadsworth site as far as we know, no-one has monitored an ICW for total nitrogen removal before.

We currently don't have any total nitrogen permits, so it will be beneficial for us to undertake trials to gain insight into our performance for nitrogen through monitoring.

The three trials will allow a thorough investigation into the options for total N removal for our business. The effluent receiving waters will benefit from reduced N and potentially other nutrient reduction such as P. Additional sampling for priority emerging substances is also of importance. Furthermore, following the trial, the equipment can remain in place to extend treatment options at those locations.

Bioresources

Our investigation option descriptions are as follows:

- Investigation of concept of reducing the concentration of key nutrients (N, P) from the biosolids generated / processed at Bran Sands and Howdon Treatment Centres. Include investigations into both prevention, management and removal of sources and nutrients on Primary Sludge Treatment Centres. Target methodologies to remove nutrients at source.
- Investigation to look at alternative disposal. Investigate complete standalone undefined advanced thermal treatment
 including contribution to research collaboration. Investigation also to include alternative end products other than biosolids
 which allow its application to an outlet such as domestic fertilizer, construction materials or biofuels market reducing the
 reliance of agriculture landbank deployment. Investigation to understand the commercial value and opportunity of key
 elements within the Biosolids composition to other industries. This will need to include the permitting, planning
 applications, construction cost and OPEX cost. Primary objective of a reduction or cessation of biosolids to agriculture
 land.
- Investigate current knowledge of microplastics throughout the STW process, through the AAD process and its pathways post deployment to agriculture land. Review and develop future mitigation to their potential impact.

These are our only, and so preferred, options.

Enhancement Case (NES39)

3.2.8 Data table alignment

The benefits and investment for our preferred options for chemicals and emerging contaminants are included in Table 16 and Table 17. We will continue to refine the profiling of benefits and expenditure as we continue to work with our strategic delivery partner to carry out further design work and optimisation of the programme for delivery.

TABLE 16: INPUTS FOR TABLE CWW15 - BENEFITS BEST VALUE OPTION

EA/NRW environmental programme	PR24 BP reference	Benefit	Units	2025-26	2026-27	2027-28	2028-29	2029-30	Total AMP8
Treatment for chemical removal	CWW15.177	Discharge permit compliance	%	0	0	0	0	0	0
	CWW15.178	Embedded greenhouse gas emissions	tonnes	514.79	411.83	414.405	422.13	316.60	2,079.75
Treatment for	CWW15.177	Discharge permit compliance	£m	0.000	0.000	0.000	0.000	0.091	0.091
chemical removal	CWW15.178	Embedded greenhouse gas emissions	£m	0.133	0.109	0.111	0.115	0.087	0.556

Source: Northumbrian Water

TABLE 17: INPUTS FOR TABLE CWW15 – BENEFITS ALTERNATIVE OPTION

EA/NRW	PR24 BP								Total
environmental	reference	Benefit	Units	2025-26	2026-27	2027-28	2028-29	2029-30	AMP8
programme									
Treatment for	CWW16.177	Discharge permit compliance	%	0	0	0	0	0	0
chemical removal	CWW16.178	Embedded greenhouse gas emissions	tonnes	514.79	411.83	411.83	411.83	308.87	2,059.15
Treatment for	CWW16.177	Discharge permit compliance	£m	0.000	0.000	0.000	0.000	0.091	0.091
chemical removal	CWW16.178	Embedded greenhouse gas emissions	£m	0.133	0.109	0.110	0.112	0.085	0.550

Source: Northumbrian Water

The expenditure correlating to these benefits is shown in Table 18.

PR**24**

Enhancement Case (NES39)

EA/NRW environmental programme	2023-24	2024-25	2025-26	2026-27	2027-28	2028-29	2029-30	Total
Treatment for chemical removal (WINEP/NEP) wastewater	0.158	7.104	7.436	7.701	1.159	1.152	1.358	25.911
Chemicals and emerging contaminants monitoring, investigations, options appraisals; (WINEP/NEP) wastewater	0.000	0.000	2.887	2.887	0.104	0.104	0.104	6.086
Investigations, other (WINEP/NEP) - multiple surveys, and/or monitoring locations, and/or complex modelling wastewater	0.000	0.000	0.438	0.438	0.000	0.000	0.000	0.875
Total	0.158	7.104	10.761	11.025	1.263	1.256	1.462	32.872

TABLE 18: INPUTS FOR TABLE CWW3 - ENHANCEMENT EXPENDITURE £M

Source: Northumbrian Water

Enhancement Case (NES39)

3.2.9 Uncertainty

Our main areas of uncertainty relating to engineered solutions are shown in Table 19. The highest areas of uncertainty and risk relate to the public perception of change in outfall location and transfer to another treatment plant. This is high due to the disruption that the delivery of these options will cause to the public. This has been taken into consideration in the option selection, only selecting these options where the benefits outweigh this risk.

PR**24**

TABLE 19: ENGINEERED OPTIONS RISK ASSESSMENT

category			Option 2 – Change outfall location		Option 4- Transfer to another treatment plant		Option 5- Replace/retrofit/expand existing primary or secondary treatment processes using existing process types or more intensive processes	
Risk	RAG	Comment	RAG	Comment MEDIUM RISK - Standard	RAG	Comment	RAG	Comment LOW RISK – Chosen option
Driver compliance		LOW RISK – Chosen option is well tested industry standard method of removing phosphorus		method of achieving compliance by transferring to alternative water bodies. Any transfer will be checked to confirm that there is no impact on the receiving water or the baseflow of the river where it is currently discharging		MEDIUM RISK - Transfer influent to other works is a standard approach of treating wastewater. Some consideration needs to be made to the impact of removing the baseflow from rivers.		is well tested industry standard method of removing phosphorus. Some risk due to reliance on performance of existing assets
Delivery		LOW RISK – frequently used and tested method of removing nutrients from water body		LOW RISK – frequently used and tested method of removing nutrients from water body		LOW RISK – Delivery and construction of transfer pipelines standard construction project.		LOW RISK - The required expansion of assets for tighter nutrient removal is fairly standard with good experience in the industry.

NORTHUMBRIAN WATER living water WATER living water

28 September 2023 PAGE 42 OF 65

Enhancement Case (NES39)

category	Option 1 – Treatment process- based permitting		Dased permitting		Option 4- Transfer to another treatment plant		Option 5- Replace/retrofit/expand existing primary or secondary treatment processes using existing process types or more intensive processes	
Risk	RAG	G Comment	RAG	Comment	RAG	Comment	RAG	Comment
Cost		LOW RISK –Industry standard method of removing phosphorus good understanding of historical costing information. Some risk to costs due to BREXIT and demand in the industry for P removal assets		LOW RISK –Industry standard method of removing phosphorus good understanding of historical costing information. Some risk to costs due to BREXIT and demand in the industry for P removal assets		MEDIUM RISK – No detailed evaluation completed to confirm work upgrades required at the receiving works as a result of the transfer		MEDIUM RISK – until a detailed site assessment has been complete it is difficult to have cost certainty on any site restrictions.
v Resources		LOW RISK No specialist resources required LOW RISK Technology is		LOW RISK No specialist resources required LOW RISK Technology is		LOW RISK No specialist resources required LOW RISK Technology is		LOW RISK No specialist resources required LOW RISK Technology is
Technology	5	standard with NWL and wider water industry		standard with NWL and wider water industry		standard with NWL and wider water industry		standard with NWL and wider water industry

Enhancement Case (NES39)

category			Option 2 – Change outfall location		Option 4- Transfer to another treatment plant		Option 5- Replace/retrofit/expand existing primary or secondary treatment processes using existing process types or more intensive processes	
Risk	RAG	Comment	RAG	Comment	RAG	Comment	RAG	Comment
Supply chain		MEDIUM RISK likely to be significant demand in the water industry for this technology, however there are several suppliers for this option		LOW RISK Multiple framework suppliers for chosen option		LOW RISK Multiple framework suppliers for chosen option		MEDIUM RISK likely to be significant demand in the water industry for this technology, however there are several suppliers for this option
Public perception		MEDIUM RISK – some disruption will be caused by construction works on site		HIGH RISK - pipeline transfer will involve disturbing the landowners along the transfer route which could cause negative publicity		HIGH RISK - pipeline transfer will involve disturbing the landowners along the transfer route which could cause negative publicity		MEDIUM RISK – some disruption will be caused by construction works on site

28 September 2023 PAGE 44 OF 65 Enhancement Case (NES39)

3.2.10 Third party funding

No opportunities for third party funding have been identified for the chosen interventions. As described, all chemicals investigations (CIP), microplastics and N-TAL will be collaborative projects benefitting from others investments and resources (time and materials) given in kind.

3.2.11 Direct procurement for customers

We assessed the chemicals programme against the DPC guidance (see our <u>assessment report</u>, NES38). This report concludes there are no opportunities for direct procurement for customers relevant to chemicals because the projects are small value and less than <£200m of whole life totex.

3.2.12 Customers views informing option selection

Our research shows that customers support investment in the environment, including wider environmental and social benefits – though they do not necessarily think they should always pay for this through their water and wastewater bills. In particular, our customers rank dealing with sewage effectively and improving the qualities of rivers as two of their "medium" priorities (prioritisation of common PCs, NES44).

In our <u>qualitative affordability and acceptability testing</u> (NES49), customers supported our "preferred" plan which included these improvements in treatment of chemicals and investigations into emerging contaminants. Customers found this plan acceptable because it focused on the right things, is good for future generations, and is environmentally friendly. Customers who did not find this plan acceptable said that this was expensive, and water companies should pay out of their own profits. We did not ask specifically about chemicals and emerging contaminants in wastewater (as our individual items were limited only to the largest investments), but customers supported maintaining rivers and reducing pollution (NES49). In our **quantitative research** (NES50), 74% of customers supported our preferred plan, including this investment.

Customers also identified "pollution leading to dead fish in rivers" and "algae choking plants and wildlife" as medium priorities in our <u>DWMP research in 2020</u>, similar to storm overflows – but not as high as chemicals and microplastics in wastewater, which one participant described as "the next pandemic".

We have not asked customers about specific options for removing cypermethrin or zinc from wastewater. For one of our sites, Hustledown STW, we chose an option which is not least cost – but instead provides improved carbon benefits. We did not ask customers specifically about this, but we compared this to customer views about embedded carbon from storm overflows research (see our <u>line-of-sight report</u>, NES45). Here, customers supported nature-based and hybrid solutions for individual storm overflows where this was not much more expensive and asked us to explore better value green solutions

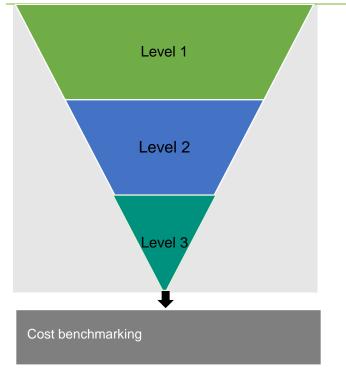
28 September 2023 PAGE 45 OF 65

Enhancement Case (NES39)

where we could. Customers supported an increase of £31m in the storm overflows programme to switch to green solutions which were better value because they have lower embedded carbon. We can apply a similar approach here.

PR24

Enhancement Case (NES39)


4. COST EFFICIENCY

4.1. APPROACH TO COSTING

4.1.1 Cost methodology

A full description of our costing methodology is contained in <u>appendix A3 – costs</u> (NES04). In Figure 2, all options for chemicals have been costed at Level 2. This level is appropriate for a Price Review submission as it is sufficient to understand that the interventions can be delivered within the cost at a programme level. A level 3 estimate would require a level of detailed design to be undertaken which would incur significantly more cost which is not appropriate until delivery is confirmed.

FIGURE 2: PROCESS COST ESTIMATION

Level - 1 (confidence: - 50% to +100%)

Costing is undertaken using Northumbrian Water's costing curves. Costing occurs at an overall asset level. For example package plant or a pumping for a certain population.

Level - 2 (confidence: - 50% to + 50%) - Chosen approach

Costing is undertaken using Northumbrian Water's costing curves. Costing occurs for each of the main items of scope. For example, the length of rising main and the size of the pumps.

Level - 3 (confidence: - 20% to +30%)

Detailed bottom-up cost of all items taking into consideration factors such as ground conditions.

Cost benchmarking

We have benchmarked 9% of the preferred options against the available cost curves from other companies. Further detail is provided in section 4.1.3.

4.1.2 Options providing cost efficiencies

We have identified three types of delivery efficiencies:

- We are choosing our options where we have more control over the cost certainty.
- We will be packaging work to enable purchasing and delivery efficiencies. For example, bulk buying large cost process units.
- The opportunity to collaborate to deliver CIP4, N-TAL and microplastics investigations, this involves funding from all WASCs maximising the value for investment and data return.

Enhancement Case (NES39)

4.1.3 Cost benchmarking

We have benchmarked direct costs for each of the key asset types and indirect costs against the cost curves for other companies in our costing partner's database. As there is no standard asset hierarchy used for costing across all companies, there are differences in what each company includes and excludes.

Therefore, our costing partner has benchmarked where it is possible to carry out an equitable comparison and this ranges between two and five other companies depending on the asset type. Table 20 summarises the benchmarking of direct costs. Direct costs are defined as those incurred on plant, labour, material, and equipment i.e., costs that are directly accountable to the project. This represents costs for site based engineered options, we have not undertaken benchmarking for investigations due to their specificity and small scale. The comparisons shown in the following tables are benchmarks for options for the WINEP Phosphorus and WINEP Chemicals drivers with site treatment based preferred options.

Investment Name	Option Type	Northumbrian £k	Benchmark £k	Delta* £k	Delta %**
Bishop Auckland STW (Vinovium NH3)	End-of-pipe	£1,776,715	£1,694,605	£82,109	5%
East Tanfield STW	End-of-pipe	£1,557,535	£1,585,085	-£27,550	-2%
Aycliffe STW	End-of-pipe	£3,607,556	£4,557,297	-£949,741	-21%
Stokesley STW Cyper	End-of-pipe	£920,579	£1,174,379	-£253,799	-22%
Willington STW_Rev1 P02	End-of-pipe	£2,616,237	£2,455,278	£160,959	7%
Stressholme STW WFD UWWTR	End-of-pipe	£10,477,481	£9,370,611	£1,106,870	12%
Total		£20,956,103	£20,837,254	£118,848	1%

TABLE 20: BENCHMARK OF DIRECT COSTS

Note: * Delta = Northumbrian – Benchmark

** Delta % = Delta ÷ Benchmark

Source: Northumbrian Water

In addition to benchmarking the direct asset costs, we conducted an analysis of client and contractor indirect costs, comparing our own project and contract overheads to data provided by six comparator water companies. A larger number of comparator companies is available for indirect costs than for direct costs. Table 21 shows that our indirect costs are calculated as 63.40% of direct costs which is 10.46% below the industry benchmark.

Enhancement Case (NES39)

TABLE 21: BENCHMARK OF INDIRECT COSTS

Indirect cost type	Northumbrian cost	Benchmark cost	Delta
Total Contractor Indirect	36.88%	48.01%	-11.14%
Total Client Indirect	26.52%	25.84%	0.68%
Total Project Indirect	63.40%	73.86%	-10.46%

Source: Northumbrian Water

The WFD programme is currently 5% below the industry benchmark when including indirect costs to the original direct costs as showed in Table 22 (below). With many items benchmarked, most of them across three other companies, there is confidence that the items identified have been analysed robustly.

TABLE 22: SUMMARY FOR WFD INCLUDING INDIRECT COSTS

Investment Name	Option	Northumbrian	Benchmark	Delta*	Delta %**
Bishop Auckland STW (Vinovium NH3)	End-of-pipe	£2,903,152	£2,946,241	-£43,089	-1%
East Tanfield STW	End-of-pipe	£2,545,012	£2,755,829	-£210,816	-8%
Aycliffe STW	End-of-pipe	£5,894,746	£7,923,316	-£2,028,570	-26%
Stokesley STW Cyper	End-of-pipe	£1,504,227	£2,041,774	-£537,548	-26%
Willington STW_Rev1 P02	End-of-pipe	£4,274,931	£4,268,746	£6,185	0%
Stressholme STW WFD UWWTR	End-of-pipe	£17,120,204	£16,291,744	£828,460	5%
Total		£34,242,272	£36,227,650	-£1,985,379	-5%

Note: * Delta = Northumbrian – Benchmark

** Delta % = Delta ÷ Benchmark

Source: Northumbrian Water

4.1.4 Factors affecting cost allowances

We are not currently submitting any evidence to support that our costs for areas covered in this enhancement case would be different than other companies.

Enhancement Case (NES39)

5. CUSTOMER PROTECTION

5.1. PERFORMANCE COMMITMENT

The ability of the wastewater treatment works to treat an increased load will be covered under the discharge permit compliance (numeric) metric which is a common performance commitment. This measure is based on a calendar year and has an underperformance payment should the commitment not be achieved.

Compliance against dry weather flow permit measures are not currently covered by a performance commitment but these will likely become a statutory requirement which will form part of the Environment Agency's Environmental performance assessment during AMP8 leaving company's open to prosecution should they fail to meet statutory requirements.

5.2. PRICE CONTROL DELIVERABLES

Our approach to determining Price Control Deliverables (PCD) is outlined in Section 12.3 of <u>A3 – costs</u> (NES04). In **Error! Reference source not found.** below, we assess our protected areas and bathing water related enhancements to test if the benefits are linked to PCs, against Ofwat's materiality of 1%, and to understand if there are outcome measures that can be used. Our assessment has highlighted that the benefits we expect to deliver through our AMP8 WINEP programme will not be measured through PCs. Therefore, we propose a PCD to ensure protection for customers through delivery of our WINEP programme.

TABLE 23: ASSESSMENT OF BENEFITS AGAINST THE PCD CRITERIA

Enhancement scheme	Benefits linked to PC?	Materiality	Possible outcomes?
Wastewater WINEP – Chemicals and emerging contaminants (NES39)	Pass – benefits are environmental or investigations	Pass – 2%	Outcome difficult to measure effectively and vary between schemes (particularly investigations). Customers could be protected through an output measure based on delivery of schemes.

Our WINEP programme is set by the Environment Agency, which determines the statutory and non-statutory investments we should make. The EA assures that WINEP actions are delivered to the agreed timeframe, and environmental obligations are met. We therefore propose a PCD that makes sure that costs are returned to customers either where the EA has decided that a project is no longer required, or where we have not delivered to the agreed timeframe and/or environmental obligations have not been met (according to the EA). A summary of our PCD for WINEP programme delivery is outlined in Table 24.

Enhancement Case (NES39)

CUSTOMERS	
Description of price control deliverable	Delivery of WINEP projects as specified in our WINEP enhancement cases (NES17,
Description of price control deriverable	NES18, NES19, NES28, NES29, NES30, NES31, NES34, NES39).
	We will report on the delivery of WINEP projects at the next price review (PR29),
	including specifying the individual projects that have been delivered, not delivered, or
Mossurement and reporting	that the EA has decided are no longer required (under the EA's WINEP alterations
Measurement and reporting	process). This is in addition to the WINEP guidance which specifies how we will need to
	report progress against delivery of the WINEP actions and tracking and reporting WINEP
	delivery in a transparent and auditable manner.
Conditions on allowance	Projects must be delivered to the specification agreed with the Environment Agency
conditions on allowance	under WINEP.
	The Environment Agency will confirm that WINEP actions have been delivered to the
	agreed timeframe, and that environmental obligations have been met. As set out in the
	WINEP guidance, there will be regular liaison between water companies and the EA to
Assurances	discuss progress, risks and issues associated with delivery of the WINEP programme
	and to identify any alterations. The EA uses the WINEP measures sign-off, technical
	review and audit guidance for assurance that the environmental obligations as set out in
	the WINEP are completed as planned.
Price control deliverable payment rate	We will return funds back to customers for individual projects, as specified in Tables 27
Price control deliverable payment rate	to 30 above (for NES39)
Impact on performance in relation to	There are some benefits to greenhouse gas emissions in NES39.
performance commitments	There are some benefits to greetinouse gas emissions in NESSS.

TABLE 24: SUMMARY OF THE PRICE CONTROL DELIVERABLE FOR OUR WINEP PROGRAMME DELIVERY TO PROTECT CUSTOMERS

We propose a single PCD for most of our WINEP programme delivery (with the exception of storm overflows). This should:

- Be set according to individual project costs, rather than a "per project" unit cost. This is because these costs vary
 considerably, and a single rate would create an incentive to deliver more of the cheapest projects (at the expense of
 more expensive projects). Ofwat's guidance in IN23/05 identifies this incentive and expects us to set out scheme level
 deliverables where costs vary significantly across schemes (so our approach here is consistent with the guidance).
- Not include an automatic penalty for non-delivery (beyond returning the costs to customers). This is because this PCD includes projects where the EA has decided these are no longer required, which should not lead to a penalty. If we did not deliver a project that is required (and where we had not agreed a change with the EA), we would not meet our statutory obligations and so this does not require an additional incentive to deliver.
- Change according to the EA's WINEP alterations process. In 2020-25, our ODI for WINEP delivery does not
 automatically take into account projects that are removed from WINEP by the EA but this should be for the EA to
 determine. Costs should be returned to customers for projects that are not required, without further interventions needed
 from Ofwat.

Enhancement Case (NES39)

This is an aggregated PCD across all our WINEP schemes except for storm overflows. We chose to aggregate these PCDs because most of our WINEP enhancement cases or projects would not be individually material, and these share the same reporting, assurance, and conditions.

Enhancement Case (NES39)

6. APPENDIX A: WFD CHEMCIALS CURRENT PERFORMANCE

The data presented in the following graphs was collected through the national CIP trials. The period required for sampling and data collection was not continuous, therefore the data shown has periods with no data.

FIGURE 3: CIP2 AND CIP3 CYPERMETHRIN DATA FOR BOWBURN STW

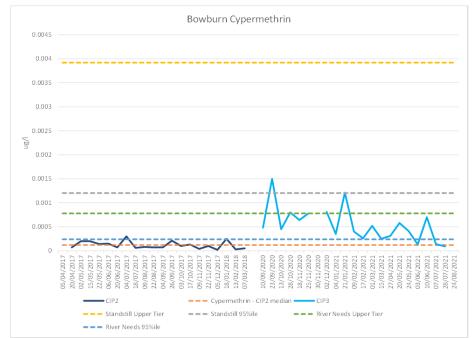
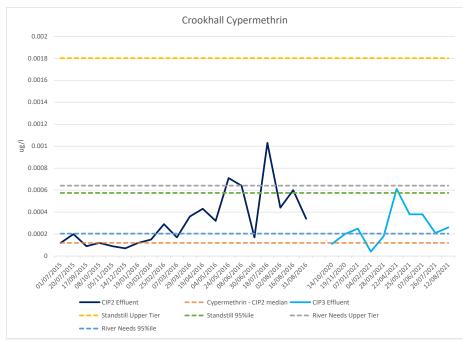
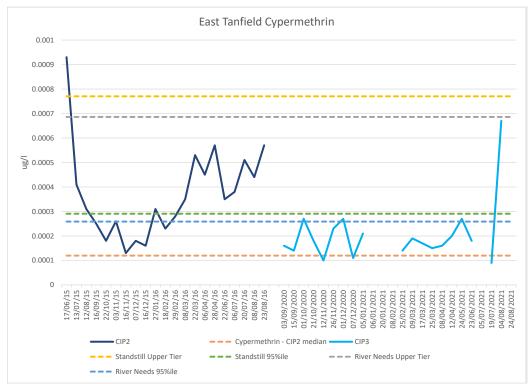
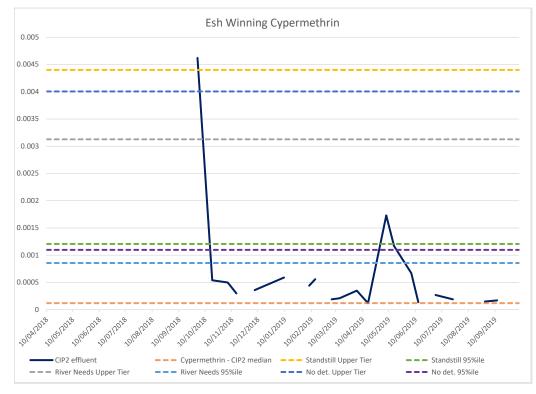



FIGURE 4: CIP2 AND CIP3 CYPERMETHRIN DATA FOR CROOKHALL STW

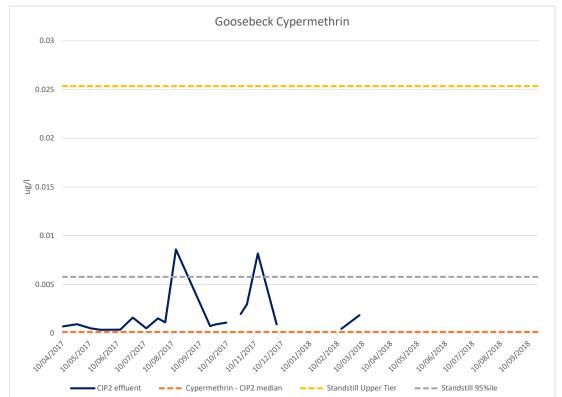


28 September 2023 PAGE 53 OF 65


PR24

Enhancement Case (NES39)

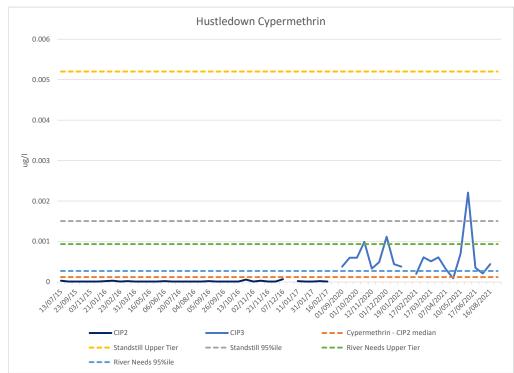
FIGURE 5: CIP2 AND CIP3 CYPERMETHRIN DATA FOR EAST TANFIELD STW

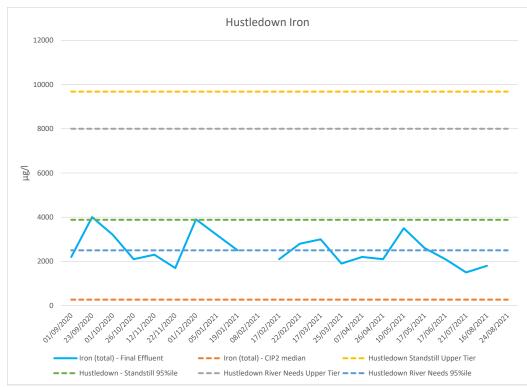

FIGURE 6: CIP2 AND CIP3 CYPERMETHRIN DATA FOR ESH WINNING STW


28 September 2023 PAGE 54 OF 65

Enhancement Case (NES39)

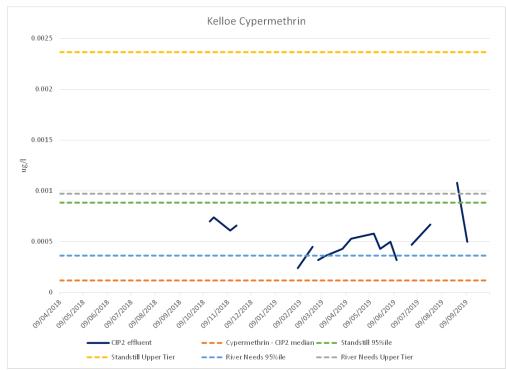
FIGURE 7: CIP2 AND CIP3 CYPERMETHRIN DATA FOR GOOSEBECK STW (TEESIDE AIRPORT)

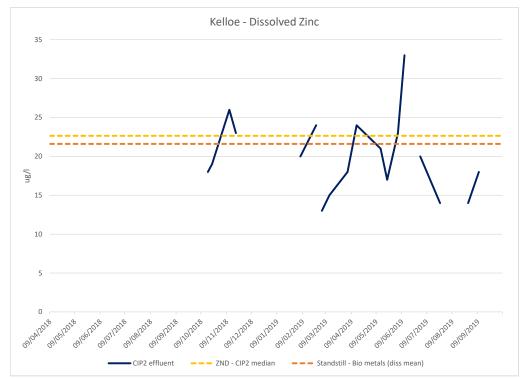

FIGURE 8: CIP2 AND CIP3 CYPERMETHRIN DATA FOR GREAT AYTON STW


28 September 2023 PAGE 55 OF 65

Enhancement Case (NES39)

FIGURE 9: CIP2 AND CIP3 CYPERMETHRIN DATA FOR HUSTLEDOWN STW

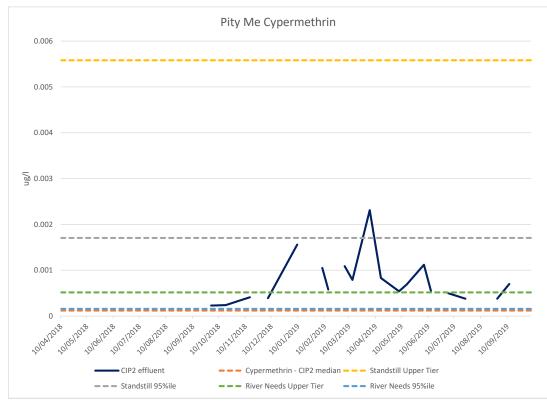

FIGURE 10: CIP2 AND CIP3 IRON DATA FOR HUSTLEDOWN STW


28 September 2023 PAGE 56 OF 65

Enhancement Case (NES39)

FIGURE 11: CIP2 AND CIP3 CYPERMETHRIN DATA FOR KELLOE STW

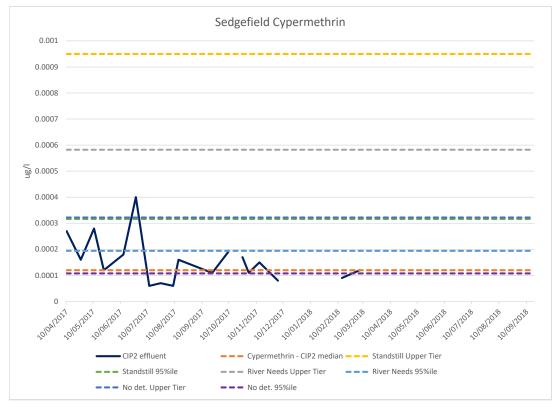
FIGURE 12: CIP2 AND CIP3 ZINC DATA FOR KELLOESTW


28 September 2023 PAGE 57 OF 65

Enhancement Case (NES39)

FIGURE 13: CIP2 AND CIP3 CYPERMETHRIN DATA FOR PITTINGTON STW

FIGURE 14: CIP2 AND CIP3 CYPERMETHRIN DATA FOR PITY ME STW


28 September 2023 PAGE 58 OF 65

Enhancement Case (NES39)

FIGURE 15: CIP2 AND CIP3 ZINC DATA FOR PITY ME STW

FIGURE 16: CIP2 AND CIP3 CYPERMETHRIN DATA FOR SEDGEFIELD STW

28 September 2023 PAGE 59 OF 65

Enhancement Case (NES39)

FIGURE 17: CIP2 AND CIP3 ZINC DATA FOR SEDGEFIELD STW

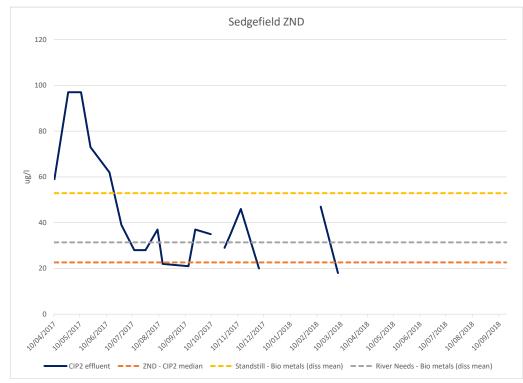
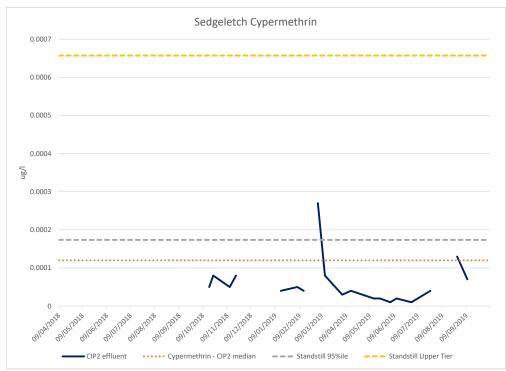
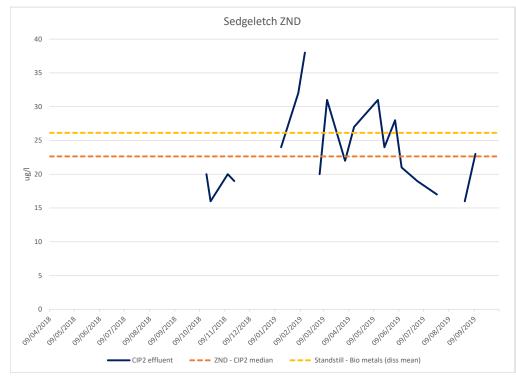
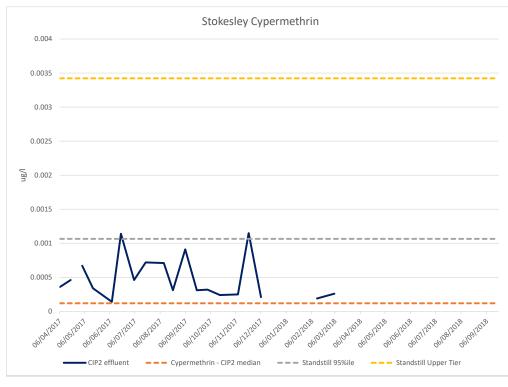



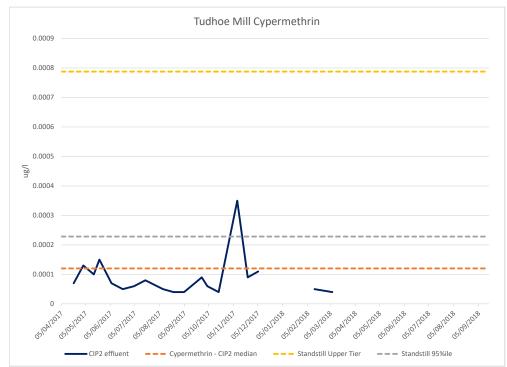
FIGURE 18: CIP2 AND CIP3 ZINC DATA FOR SEDGELETCH STW



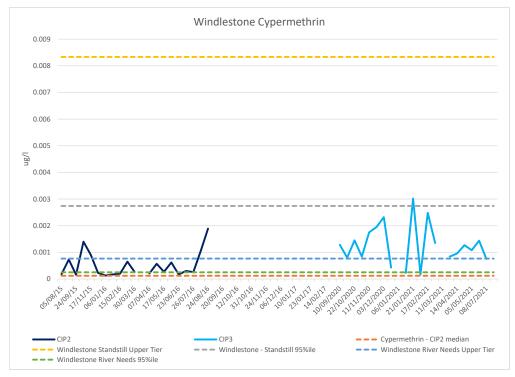


Enhancement Case (NES39)

FIGURE 19:CIP2 AND CIP3 ZINC DATA FOR SEDGELETCH STW

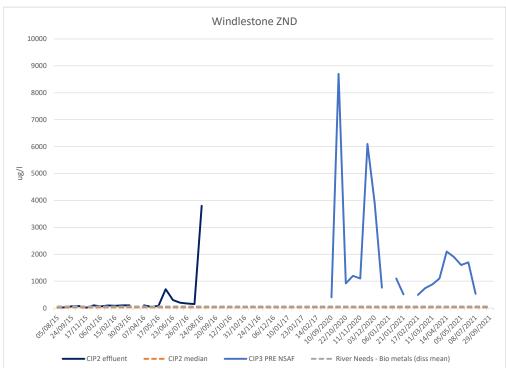

FIGURE 20: CIP2 AND CIP3 CYPERMETHRIN DATA FOR STOKESLEY STW

NORTHUMBRIAN WATER(iving water | WATER(iving water


28 September 2023 PAGE 61 OF 65

Enhancement Case (NES39)

FIGURE 21: CIP2 AND CIP3 CYPERMETHRIN DATA FOR TUDHOE MILL STW


FIGURE 22: CIP2 AND CIP3 CYPERMETHRIN DATA FOR WINDLESTONE STW

NORTHUMBRIAN WATER(iving water | WATER(iving water

28 September 2023 PAGE 62 OF 65

Enhancement Case (NES39)

FIGURE 23:CIP2 AND CIP3 ZINC DATA FOR WINDLESTONE STW

NORTHUMBRIAN WATER living water WATER living water

Enhancement Case (NES39)

7. **APPENDIX B: NPV AND PREFERRED OPTIONS**

TABLE X NPV AND PREFERRED OPTIONS FOR CHEMICAL REMOVAL

Sile NameChemicalOptionNPV £mCostChosen OptionEsh Winning STWCypermethrinFlexible permitting (approach 3)-0.017NAlternative optionEsh Winning STWCypermethrinFlexible permitting (approach 3), Expand Tertiary-2.138YPreferred optionEsh Winning STWCypermethrinFlexible permitting (approach 3), Replace existing-2.138YPreferred optionEsh Winning STWCypermethrinChange outfal location to River Wear-1.4.936NAlternative optionCrookhall STWCypermethrinChange outfal location to River Wear-1.4.936NAlternative optionCrookhall STWCypermethrinChange outfal location to River Wear-1.4.936NAlternative optionCrookhall STWCypermethrinChange outfal location to River Wear-2.158NAlternative optionHustledown STWCypermethrinFlexible permitting (approach 2)3.402YPreferred optionHustledown STWCypermethrinFlexible permitting (approach 2)0.062NAlternative optionHustledown STWCypermethrinFlexible permitting (approach 3), expand existingHustledown STWOppermethrinFlexible permitting (approach 3), expand existingHustledown STWCypermethrinHustledown STWCypermethrinChange outfal location to River Wear-9.688NAlternative optionKelloe STWCypermethrinChange outfal location to River Wear-9.549NAlternative optionFlex				Value	Least	
Esh Winning STW Cypermethrin Flexible permitting (approach 3) -0.017 N Alternative option Esh Winning STW Cypermethrin Flexible permitting (approach 3), Expand Tertlary -2.138 Y Preferred option Esh Winning STW Cypermethrin new construction -2.138 Y Preferred option Esh Winning STW Cypermethrin new construction -2.138 Y Preferred option Crookhall STW Cypermethrin Change outfall location to River Wear -14.936 N Alternative option Crookhall STW Cypermethrin Replace existing secondary treatment with ASP -5.109 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Preferred option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Alternative option Kelloe STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Flexible Flexible permitting (approach 3) 0.067 Y Preferred option	Site Name	Chemical	Option	NPV £m	Cost	Chosen Option
Flexible permitting (approach 3), Expand Tertiary Esh Winning STW Cypermethrin reatment with new TSR -2.138 Y Preferred option Esh Winning STW Cypermethrin reatment with ASP -4.141 N Alternative option Crookhall STW Cypermethrin Change outfall location to River Wear -14.936 N Alternative option Crookhall STW Cypermethrin Replace existing secondary treatment with ASP -5.109 N Alternative option Crookhall STW Cypermethrin Replace existing secondary treatment with ASP -5.109 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Preferred option Hustledown STW Cypermethrin Flexible permitting (approach 3), expand existing -1.601 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Kelloe STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Flexible permitting (approach 3)	Esh Winning STW	Cypermethrin	Change outfall location to River Wear	-3.062	Ν	Alternative option
Esh Winning STWCypermethrintreatment with new TSR-2.138YPreferred optionFlexible permitting (approach 3), Replace existingEsh Winning STWCypermethrinCharge outfall location to River Wear-1.41.11NAlternative optionCrookhall STWCypermethrinCharge outfall location to River Wear-1.4.936NAlternative optionCrookhall STWCypermethrinReplace existing secondary treatment with ASP-5.109NAlternative optionCrookhall STWCypermethrinReplace existing secondary treatment with ASP-5.109NAlternative optionHustledown STWCypermethrinReplace existing secondary treatment with ASP-5.109NAlternative optionHustledown STWCypermethrinFlexible permitting (approach 3)0.062NPreferred optionHustledown STWCypermethrinFlexible permitting (approach 2)0.187YAlternative optionHustledown STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionHustledown STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionKelloe STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3)0.067YPreferred optionKelloe STWCypermethrinRiver monitoring at Sherbum0.221YPreferred optionPittington	Esh Winning STW	Cypermethrin	Flexible permitting (approach 3)	-0.017	Ν	Alternative option
Flexible permitting (approach 3), Replace existing Esh Winning STW Cypermethrin Secondary treatment with ASP -4.141 N Alternative option Crookhall STW Cypermethrin Relace outfall location to River Wear -14.936 N Alternative option Crookhall STW Cypermethrin Flexible permitting (approach 2) 3.402 Y Preferred option Crookhall STW Cypermethrin Replace existing secondary treatment with ASP -5.109 N Alternative option Crookhall STW Cypermethrin Replace existing secondary treatment with ASP -22.558 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Preferred option Hustledown STW Cypermethrin Flexible permitting (approach 2) 0.187 Y Alternative option Kelloe STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Kelloe STW Cypermethrin Rhage outfall location to River Wear -9.888 N Alternative option Sedgefield STW Cy			Flexible permitting (approach 3), Expand Tertiary			
Esh Winning STWCypermethrinsecondary treatment with ASP-4.141NAlternative optionCrookhall STWCypermethrinChange outfall location to River Wear-14.936NAlternative optionCrookhall STWCypermethrinFlexible permitting (approach 2)3.402YPreferred optionCrookhall STWCypermethrinReplace existing secondary treatment with ASP-5.109NAlternative optionHustledown STWCypermethrinChange outfall location to River Wear-22.558NAlternative optionHustledown STWCypermethrinFlexible permitting (approach 3)0.062NPreferred optionHustledown STWCypermethrinFlexible permitting (approach 3)0.062NPreferred optionHustledown STWCypermethrinFlexible permitting (approach 2)0.187YAlternative optionHustledown STWCypermethrinFlexible permitting (approach 2)0.187YAlternative optionKelloe STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionKelloe STWCypermethrinRiver monitoring at Sheburn0.221YPreferred optionPittington STWZincChange outfall location to River Wear-28.820NAlternative optionSedgefield STWZincChange outfall location to River Wear-28.820NAlternative optionSedgefield STWZincChange outfall location to River Wear-1.657NAlternative optionBowb	Esh Winning STW	Cypermethrin	treatment with new TSR	-2.138	Υ	Preferred option
Crookhall STW Cypermethrin Change outfall location to River Wear -14.936 N Alternative option Crookhall STW Cypermethrin Flexible permitting (approach 2) 3.402 Y Preferred option Crookhall STW Cypermethrin Replace existing secondary treatment with ASP -5.109 N Alternative option Hustledown STW Cypermethrin Change outfall location to River Wear -22.558 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Preferred option Hustledown STW Cypermethrin tertiary treatment · NSAF -1.601 N Alternative option Hustledown STW Cypermethrin tertiary treatment · NSAF -1.601 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 2) 0.187 Y Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Kelloe STW Cypermethrin Flexible permitting (approach 3), expand existing -0.549 N Alternative option Pitington STW			Flexible permitting (approach 3), Replace existing			
Crookhall STW Cypermethrin Flexible permitting (approach 2) 3.402 Y Preferred option Crookhall STW Cypermethrin Replace existing secondary treatment with ASP 5.109 N Alternative option Hustledown STW Cypermethrin Change outfall location to River Wear -22.558 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Preferred option Hustledown STW Cypermethrin Flexible permitting (approach 3), expand existing Hernative option Hustledown STW Cypermethrin Flexible permitting (approach 2) 0.187 Y Alternative option Kelloe STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Flexible permitting (approach 3) 0.067 Y Preferred option Flexible permitting (approach 3) 0.067 Y Preferred option Kelloe STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Flexible permitting (approach 3) 0.067 Y Preferred option Flexible permitting (approach 3) 0.007 Y P	Esh Winning STW	Cypermethrin	secondary treatment with ASP	-4.141	Ν	Alternative option
Crookhall STW Cypermethrin Replace existing secondary treatment with ASP 5.109 N Alternative option Hustledown STW Cypermethrin Change outfall location to River Wear -22.558 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Preferred option Hustledown STW Cypermethrin Flexible permitting (approach 3), expand existing Hustledown STW Cypermethrin Flexible permitting (approach 2) 0.187 Y Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Kelloe STW Cypermethrin Flexible permitting (approach 3) 0.067 Y Preferred option Flexible permitting (approach 3) 0.067 Y Preferred option Flexible permitting (approach 3) 0.067 Y Preferred option Flexible permitting (approach 3) 0.067 Y Preferred option Preferred option Pittington STW Cypermethrin River monitoring at Sherburn 0.221 Y Preferred option	Crookhall STW	Cypermethrin	Change outfall location to River Wear	-14.936	Ν	Alternative option
Hustledown STW Cypermethrin Change outfall location to River Wear -22.558 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Preferred option Hustledown STW Cypermethrin Flexible permitting (approach 3), expand existing 1.601 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 2) 0.187 Y Alternative option Kelloe STW Cypermethrin Flexible permitting (approach 2) 0.067 Y Preferred option Kelloe STW Cypermethrin Flexible permitting (approach 3), expand existing 0.067 Y Preferred option Flexible permitting (approach 3), expand existing Flexible permitting (approach 3), expand existing 0.067 Y Preferred option Flexible permitting (approach 3), expand existing Gypermethrin Flexible permitting (approach 3), expand existing 0.067 Y Preferred option Flexible permitting (approach 3), expand existing 0.067 Y Preferred option Preferred option Fittington STW Cypermethrin Relver monitoring at Sherburn 0.221 Y Preferred opt	Crookhall STW	Cypermethrin	Flexible permitting (approach 2)	3.402	Y	Preferred option
Hustledown STW Cypermethrin Flexible permitting (approach 3) 0.062 N Preferred option Hustledown STW Cypermethrin ferilary treatment - NSAF -1.601 N Alternative option Hustledown STW Cypermethrin Flexible permitting (approach 2) 0.187 Y Alternative option Kelloe STW Cypermethrin Flexible permitting (approach 2) 0.067 Y Preferred option Kelloe STW Cypermethrin Flexible permitting (approach 3), expand existing 0.067 Y Preferred option Kelloe STW Cypermethrin Flexible permitting (approach 3), expand existing 0.067 Y Preferred option Flexible permitting (approach 3), expand existing 6.067 Y Preferred option Preferred option Flexible permitting (approach 3), expand existing 0.067 Y Preferred option Preferred option Pity Me STW Zinc AMP7 transfer, permit removed 0.000 Y Preferred option Sedgefield STW Zinc Flexible permitting (approach 3) 0.106 Y Preferred option Bowburn STW Cypermethrin AMP7 transfer, permit removed<	Crookhall STW	Cypermethrin	Replace existing secondary treatment with ASP	-5.109	Ν	Alternative option
Flexible permitting (approach 3), expand existingHustledown STWCypermethrinFlexible permitting (approach 2)0.187YAlternative optionHustledown STWCypermethrinFlexible permitting (approach 2)0.187YAlternative optionKelloe STWCypermethrinChange outfall location to River Wear-9.898NAlternative optionKelloe STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionKelloe STWCypermethrinFlexible permitting (approach 3), expand existingNAlternative optionPittington STWCypermethrinRiver monitoring at Sherburn0.221YPreferred optionPittington STWCypermethrinRiver monitoring at Sherburn0.221YPreferred optionSedgefield STWZincAMP7 transfer, permit removed0.000YPreferred optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionBowburn STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinRiser monitoring at Sherborn0.106YPreferred optionBowburn STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinRiser memit removed0.000YPreferred optionExpand existing tertiary treatment processes withSAF-1.657NAlternative optionBowburn STW <t< td=""><td>Hustledown STW</td><td>Cypermethrin</td><td>Change outfall location to River Wear</td><td>-22.558</td><td>Ν</td><td>Alternative option</td></t<>	Hustledown STW	Cypermethrin	Change outfall location to River Wear	-22.558	Ν	Alternative option
Hustledown STWCypermethrintertiary treatment - NSAF-1.601NAlternative optionHustledown STWCypermethrinFlexible permitting (approach 2)0.187YAlternative optionKelloe STWCypermethrinChange outfall location to River Wear-9.898NAlternative optionKelloe STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3), expand existingFlexible permitting (approach 3), expand existingNAlternative optionPittington STWCypermethrinRiver monitoring at Sherburn0.221YPreferred optionPitty Me STWZincAMP7 transfer, permit removed0.000YPreferred optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionExpand existing tertiary treatment processes withNSAF-1.657NAlternative	Hustledown STW	Cypermethrin	Flexible permitting (approach 3)	0.062	Ν	Preferred option
Hustledown STWCypermethrinFlexible permitting (approach 2)0.187YAlternative optionKelloe STWCypermethrinChange outfall location to River Wear-9.898NAlternative optionKelloe STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionKelloe STWCypermethrinFlexible permitting (approach 3), expand existing	-		Flexible permitting (approach 3), expand existing			
Kelloe STWCypermethrinChange outfall location to River Wear-9.898NAlternative optionKelloe STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionKelloe STWCypermethrinFlexible permitting (approach 3), expand existingKelloe STWCypermethrintertiary treatment processes with NSAF-0.549NAlternative optionPittington STWCypermethrinRiver monitoring at Sherburn0.221YPreferred optionPitty Me STWZincAMP7 transfer, permit removed0.000YPreferred optionSedgefield STWZincChange outfall location to Seaton Carew-29.820NAlternative optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067<	Hustledown STW	Cypermethrin	tertiary treatment - NSAF	-1.601	Ν	Alternative option
Kelloe STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3), expand existingKelloe STWCypermethrintertiary treatment processes with NSAF-0.549NAlternative optionPittington STWCypermethrinRiver monitoring at Sherburn0.221YPreferred optionPity Me STWZincAMP7 transfer, permit removed0.000YPreferred optionSedgefield STWZincChange outfall location to Seaton Carew-29.820NAlternative optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STW <td>Hustledown STW</td> <td>Cypermethrin</td> <td>Flexible permitting (approach 2)</td> <td>0.187</td> <td>Y</td> <td>Alternative option</td>	Hustledown STW	Cypermethrin	Flexible permitting (approach 2)	0.187	Y	Alternative option
Flexible permitting (approach 3), expand existingKelloe STWCypermethrintertiary treatment processes with NSAF-0.549NAlternative optionPittington STWCypermethrinRiver monitoring at Sherburn0.221YPreferred optionPity Me STWZincAMP7 transfer, permit removed0.000YPreferred optionSedgefield STWZincChange outfall location to Seaton Carew-29.820NAlternative optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.087YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinExpand existing tertiary treatment with NSAF-0.827NAlternative option <td>Kelloe STW</td> <td>Cypermethrin</td> <td>Change outfall location to River Wear</td> <td>-9.898</td> <td>N</td> <td>Alternative option</td>	Kelloe STW	Cypermethrin	Change outfall location to River Wear	-9.898	N	Alternative option
Kelloe STWCypermethrintertiary treatment processes with NSAF-0.549NAlternative optionPittington STWCypermethrinRiver monitoring at Sherburn0.221YPreferred optionPity Me STWZincAMP7 transfer, permit removed0.000YPreferred optionSedgefield STWZincChange outfall location to Seaton Carew-29.820NAlternative optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinExpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinF	Kelloe STW	Cypermethrin	Flexible permitting (approach 3)	0.067	Y	Preferred option
Pittington STWCypermethrinRiver monitoring at Sherburn0.221YPreferred optionPity Me STWZincAMP7 transfer, permit removed0.000YPreferred optionSedgefield STWZincChange outfall location to Seaton Carew-29.820NAlternative optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible	-		Flexible permitting (approach 3), expand existing			
Pity Me STWZincAMP7 transfer, permit removed0.000YPreferred optionSedgefield STWZincChange outfall location to Seaton Carew-29.820NAlternative optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinExpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGrosebeck STWCypermethrinAMP7 t	Kelloe STW	Cypermethrin	tertiary treatment processes with NSAF	-0.549	Ν	Alternative option
Sedgefield STWZincChange outfall location to Seaton Carew-29.820NAlternative optionSedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-1.657NAlternative optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinExpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Pittington STW	Cypermethrin	River monitoring at Sherburn	0.221	Y	Preferred option
Sedgefield STWZincFlexible permitting (approach 3)0.106YPreferred optionPity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinExpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrin <t< td=""><td>Pity Me STW</td><td>Zinc</td><td>AMP7 transfer, permit removed</td><td>0.000</td><td>Y</td><td>Preferred option</td></t<>	Pity Me STW	Zinc	AMP7 transfer, permit removed	0.000	Y	Preferred option
Pity Me STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionBowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionExpand existing tertiary treatment processes with-1.657NAlternative optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3)combined withsedgefield STWAlternative optionSedgefield STWCypermethrinexpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Sedgefield STW	Zinc	Change outfall location to Seaton Carew	-29.820	Ν	Alternative option
Bowburn STWCypermethrinChange outfall location to River Wear-13.085YPreferred optionExpand existing tertiary treatment processes withExpand existing tertiary treatment processes with-13.085YPreferred optionBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3)combined with-1.803NAlternative optionSedgefield STWCypermethrinexpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Sedgefield STW	Zinc	Flexible permitting (approach 3)	0.106	Y	Preferred option
Expand existing tertiary treatment processes withBowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3)combined withSedgefield STWCypermethrinexpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Pity Me STW	Cypermethrin	AMP7 transfer, permit removed	0.000	Y	Preferred option
Bowburn STWCypermethrinNSAF-1.657NAlternative optionBowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionSedgefield STWCypermethrinexpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Bowburn STW	Cypermethrin	Change outfall location to River Wear	-13.085	Y	Preferred option
Bowburn STWCypermethrinFlexible permitting (approach 2)2.530NAlternative optionSedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3)combined withSedgefield STWCypermethrinexpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option			Expand existing tertiary treatment processes with			
Sedgefield STWCypermethrinFlexible permitting (approach 3)0.067YPreferred optionFlexible permitting (approach 3) combined withSedgefield STWCypermethrinexpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Bowburn STW	Cypermethrin	NSAF	-1.657	Ν	Alternative option
Flexible permitting (approach 3) combined withSedgefield STWCypermethrinexpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Bowburn STW	Cypermethrin	Flexible permitting (approach 2)	2.530	Ν	Alternative option
Sedgefield STWCypermethrinexpand existing tertiary treatment with NSAF-0.827NAlternative optionEast Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Sedgefield STW	Cypermethrin	Flexible permitting (approach 3)	0.067	Y	Preferred option
East Tanfield STWCypermethrinExpand existing tertiary treatment with NSAF-1.803NAlternative optionEast Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option			Flexible permitting (approach 3) combined with			
East Tanfield STWCypermethrinFlexible permitting (approach 2)0.187YPreferred optionGoosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	Sedgefield STW	Cypermethrin	expand existing tertiary treatment with NSAF	-0.827	Ν	Alternative option
Goosebeck STWCypermethrinAMP7 transfer, permit removed0.000YPreferred optionGreat Ayton STWCypermethrinExpand existing treatment processes with NSAF-1.693NAlternative option	East Tanfield STW	Cypermethrin	Expand existing tertiary treatment with NSAF	-1.803	Ν	Alternative option
Great Ayton STW Cypermethrin Expand existing treatment processes with NSAF -1.693 N Alternative option	East Tanfield STW	Cypermethrin	Flexible permitting (approach 2)	0.187	Y	Preferred option
	Goosebeck STW	Cypermethrin	AMP7 transfer, permit removed	0.000	Y	Preferred option
Great Ayton STW Cypermethrin Flexible permitting (approach 2) 4.231 Y Preferred option	Great Ayton STW	Cypermethrin	Expand existing treatment processes with NSAF	-1.693	N	Alternative option
	Great Ayton STW	Cypermethrin	Flexible permitting (approach 2)	4.231	Y	Preferred option

28 September 2023 **PAGE 64 OF 65**

PR24

Enhancement Case (NES39)

Kelloe STW	Zinc	Change outfall location to River Wear	-9.898	Ν	Alternative option
Kelloe STW	Zinc	Flexible permitting (approach 3)	0.106	Y	Preferred option
Kelloe STW	Zinc	Flexible permitting (approach 2)	0.208	Ν	Alternative option
Sedgeletch STW	Cypermethrin	Expand existing tertiary treatment with TSR	-7.660	Ν	Alternative option
Sedgeletch STW	Cypermethrin	Flexible permitting (approach 2)	0.418	Y	Preferred option
Sedgeletch STW	Zinc	Change outfall location to River Wear	-12.368	Y	Preferred option
Sedgeletch STW	Zinc	Flexible permitting (approach 2)	0.218	Ν	Alternative option
Stokesley STW	Cypermethrin	Expand existing tertiary treatment with NSAF	-9.386	Ν	Alternative option
Stokesley STW	Cypermethrin	Flexible permitting (approach 2)	0.187	Y	Preferred option
Tudhow Mill STW	Cypermethrin	Expand existing treatment processes with TSR	-2.426	Ν	Alternative option
Tudhow Mill STW	Cypermethrin	Flexible permitting (approach 2)	0.187	Y	Preferred option
Windelstone STW	Cypermethrin	Expand existing tertiary treatment NSAF	-1.197	Ν	Alternative option
Windelstone STW	Cypermethrin	Flexible permitting (approach 2)	1.201	Y	Preferred option

PR24